三维马氏距离_马氏距离2

欧氏距离是计算两点间距离的常用方法,但在处理多维度数据时,马氏距离考虑了变量间的相关性,更适用于不同属性权重不等的情况。在数字图像处理中,欧氏距离变换用于将前景像素转换为其到最近背景点的距离,常见于骨架提取。马氏距离计算涉及样本协方差矩阵,满足距离函数的四个基本条件。
摘要由CSDN通过智能技术生成

欧氏距离定义:欧氏距离(Euclidean distance)也称欧几里得距离是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。

欧氏距离:(∑(Xi-Yi)2)1/2,即两项间的差是每个变量值差的平方和再平方根,目的是计算其间的整体距离即不相似性。

在二维和三维空间中的欧式距离的就是两点之间的距离,二维的公式是

d = sqrt((x1-x2)^+(y1-y2)^)

三维的公式是

d=sqrt(x1-x2)^+(y1-y2)^+(z1-z2)^)

推广到n维空间,欧式距离的公式是

d=sqrt( ∑(xi1-xi2)^ ) 这里i=1,2..n

xi1表示第一个点的第i维坐标,xi2表示第二个点的第i维坐标

n维欧氏空间是一个点集,它的每个点可以表示为(x(1),x(2),...x(n)),其中x(i)(i=1,2...n)是实数,称为x的第i个坐标,两个点x和y=(y(1),y(2)...y(n))之间的距离d(x,y)定义为上面的公式.

欧氏距离看作信号的相似程度。距离越近就越相似,就越容易相互干扰,误码率就越高。

========

所谓欧氏距离变换,是指对于一张二值图像(再次我们假定白色为前景色,黑色为背景色),将前景中的像素的值转化为该点到达最近的背景点的距离。

欧氏距离变换在数字图像处理中的应用范围很广泛,尤其对于图像的骨架提取,是一个很好的参照。

所谓欧氏距离变换,是指对于一张二值图像(再次我们假定白色为前景色,黑色为背景

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值