在视频推荐系统中,用户上传的视频一般都会先通过审核,然后再由运营精编,之后才是过召回排序等算法模型。由于每天上传视频的数量巨大,全由人工进行审核会耗费大量人力,且人工审核的标准容易浮动,由此催生出机器审核的需求。
针对视频常见的不推荐原因,我实现了以下几类视频的过滤,准确率均在88%以上:
视频不推荐原因:视频马赛克、视频模糊、视频四黑边、视频ppt;
封面不推荐原因:封面马赛克、封面模糊、封面四黑边;
标题不推荐原因:标题不通顺、标题特殊字符;
所用到的算法有:
1、CNN;
2、SVM;
3、TextCNN、TextRNN;
4、HanLP;