代数余子式和余子式符号_MIT线性代数18.06-课程笔记-(三)

08605a23fe2d46fbcddd240fe120cf0e.png

Topic 11 逆矩阵/克莱姆法则/体积

  • 二阶矩阵求逆公式(Gauss-Jordan求得)
  • 逆矩阵公式(行列式应用一)
    • 其中矩阵
      为伴随矩阵(cofactor matrix-代数余子式矩阵),由
      的代数余子式矩阵转置得到

      代数余子式矩阵:与矩阵A对应位置上的值为矩阵A对应位置元素的代数余子式的值
    • 个元素乘积,伴随矩阵
      个元素乘积(代数余子式)
    • 证明:
      式(24)等价于
      将上式左边矩阵展开,左边乘积矩阵对角元素为
      , 即A的第i行乘以伴随矩阵的第i列,得到A行列式的代数余子式展开(对应元素乘以对应代数余子式之和)。

      除对角元素外的位置的值为A中第j行与伴随矩阵第k列(
      )乘积,对应乘积的和同样构成代数余子式展开形式,即对应一个行列式
      ,该行列式有两行相等,这两行都等于A的第j行,原因如下:

      与A的第j行对应元素
      相乘的代数余子式(伴随矩阵
      的第k列,即
      的余子式矩阵的第k行)不是该元素
      的代数余子式,因此该余子式的行列式形式(
      维)中必然包含A的第j行中的
      个元素。因此可以想象,行列式
      中有两行A的第j行。

      因此行列式
      值为0,即左式非对角元素为0。Q.E.D.
  • Cramer’s Rule 克莱姆法则(行列式应用二)
    其中
    而矩阵
    为矩阵A的第
    列用向量b替换得到。因此求解线性方程组转化为求解
    个行列式。
  • 逆矩阵公式及克莱姆法则意义:将求解线性方程组变为纯粹的代数运算而不是算法(如消元法),但是实际计算上计算量很大,并不合适。
  • 行列式求体积(面积)(平行多面体)(行列式应用三)
    其中A的行列式符号表示box是在左手系还是右手系,但体积不变,故取绝对值。

    box:平行多面体中的边为矩阵A中的n个行向量
    • 证明:

只要证明box的体积满足行列式的三个基本性质即可。
1)单位立方体,体积为1——对应单位矩阵,行列式为1
2)交换两边的值,多面体体积不变——对应行列式交换两行,绝对值不变
3.a)长方体,一条边长乘系数k,体积为k倍/平行四边形一边乘以k,面积增大k倍——对应行列式一行乘以系数k
3.b)一条边向量加上另一条边向量后得到的向量与不变的向量组成新的平行四边形,相加后的有向面积与相加前两个有向面积相同(相加前两个有向面积

,投影到相加后面积
的部分
相加后等于
的面积,其他方向部分抵消了)——对应行列式单行的线性
    • 一个顶点在原点的平行四边形面积(已知所有顶点坐标求面积):

      不在原点:

      证明:将23行减去第一行,然后按第三列余子式展开,得到平移至原点的平行四边形的面积
  • 向量混合积/向量叉乘(不考虑方向)

Topic 12 特征值与特征向量/对角化和A的幂/一阶向量差分方程

  • 特征向量(eigenvector)与特征值(eigenvalue):向量
    经过矩阵A变换后方向保持不变(同向或反向),则
    称为矩阵A的特征向量,对应
    称为特征值
    当A是奇异矩阵时,
    是特征值
    特征向量与特征值拓展讨论见特征值与特征向量
  • 对于投影矩阵P:投影与原向量同向,要求原向量在投影平面(超平面)上
  • 特征值的和等于矩阵的迹
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值