代数余子式和余子式符号_线性代数——复习笔记

2b3c4fa0e9b7f393b42f580d5933ec47.png
线代学了有一段时间了,虽然知识点还不算多,但是感觉还是头脑中并没有清晰的脉络,但又想做点什么在这个国庆假期,但现在突然对写代码厌倦了,不知道能做点什么别的,担心自己会闲下来,可不能放纵自己就颓废了。
但鉴于似乎自己线代本身没学透彻,写不出什么精彩能让人醍醐灌顶的文章,只好记录一些经典的题目,在题目集中回头来分析它来巩固一些重难知识点。
所以,这不是解题,比解题啰嗦;也不是知识讲解,可能不会详细。基础知识还是好好去看书本呢!

习题目录

1. 行列式基础 : 题【1-4】
2. 矩阵基础:题【5-7】
3. 分块矩阵: 题【8】
4. 初等变换:无
5. 向量和向量组基础(秩)
6. 线性表示与向量组的线性相关性
7. 齐次线性方程组和非其次和线性方程组
8. 向量的内积
9. 方阵的特征值和特征值向量与
X. 相似矩阵和实对称矩阵及其对角化
  1. 在六阶行列式中,
    项所带的符号是:_______

:: 考察行列式的符号与排列。(教材版本中未讲排列的同学可跳过)

直接上最后根本的行列式定义:

表示对“
”的所有排列“
”求和,其中,
为排列
逆序数,记做

观察到:在用定义计算行列式的每一项符号时,不是要求行为自然排列就要求列是自然排列。而题目中显然是乱序,所以我们先排列一下得:

(按行自然排列。
PS:按定义展开的每一项的各个
都是每行每列各取一个不同下标的元素,所以不用担心无法构成排列的这种傻问题,知识点掌握扎实了瞎想就会少很多

对应到行标的自然排列,该项的符号自然是:

答案为:`-` 负号

不会吧,才学多久就对行列式生疏啦?可以先看马同学的这篇文章复习一下:

马同学:线性代数(三)行列式的来历​zhuanlan.zhihu.com
51b1ba5097954da0e3a9771ea7242967.png

2. ✧计算下面行列式的值:

:: 利用行列式的性质化成三角行列式进行计算或……

简单嘛,直接上Mathematica算的:

397f4f957509ae8e64640c41e5201916.png
直接化成上三角行列式,值为对角线元素相乘,简单暴力

是不是很简单啊,就是这样一步步解实在费劲也费纸了。相信你划到这手一定都划累了吧。其实看着题目长得这么有规律,想必一定是有奇妙的解法:我想到了一个绝妙的解法,可惜纸张太小…… ;开玩笑的啦,我可没这个费马省纸的本事。认真听讲了的同学一定对 范德蒙行列式 有印象:(其中,

)

推导中使用了数学归纳法,我暂不推导了,学会用就好。先观察使用条件,符合的方阵形式每列从上至下依次为一个数的0到n-1次方。而题目中的方阵每列是从下倒上,很简单,将行交换一下:

就符合范德蒙行列式的形式了,两次交换负负得正,符号不变。那么现在来看其结果:
是个啥,不要对其感到害怕,它和π一个读音,和
(sigma)类似,意为做累乘,运算意义看看下面的百度百科就能很快明白:

e80b389e51164acb5e49729abe8a0a57.png
图片来自百度百科:https://baike.baidu.com/item/∏/8402025

看完度娘的解释有同学可能还是会觉得很困惑,题中有两个变元时的这个

是怎么累乘的呢?

其实也不难想,两个变元的累乘就是 从这两个变元的值域中,每次挑出一对满足关系(j<i)的不重复的i、j值的组合代入。具体看个例子就明白了,但首先我们可以知道:对于上面这样一个n级的累乘,应该有

个因式。

例如: 4级累乘恰好有

个因式

所以将题目的条件带入范德蒙行列式中得:

3. ✧计算

:: 利用行列式的性质化简。

这道行列式化简略有难度,但却有不少方法可以解决:普通化三角行列式法,拆分法,镶边法……

法一:化三角行列式法

法二:拆分法

法三:镶边法

(写起来会很长,以后再补,留作思考题了)

4. ✧已知四阶行列式中第一行元素依次是-4,0,1,3,第三行元素的余子式依次为-2,5,1,x,则x=_______;

:: 考察行列式的按行展开的性质。

对于行列式D及其元素

,元素对应的代数余子式
有以下关系

一行元素分别乘以非当前行的代数余子式的和为零。也就是说 第一行的元素分别乘以第三行的代数余子式的和为零,先算出第三行余子式的符号得出其代数余子式。然后列出方程

,自然得出

5. ✧若

有非零解,则
= _______

:: 考察克莱姆法则的推论

克莱姆法则限定了线性方程组系数行列式不为0的情况,方程必定有且有唯一解(及解的结果)。而当线性方程系数行列式为不为零时,解的情况是未知的;但我们可以根据逆否命题和原命题等价的这一性质得出一部分推论:当方程组的结果不只唯一解的时候,线性方程组的系数行列式必定为0。 而题目中的方程组我们已知其有非零解,而观察易知: 7

一定是方程组的一个解,即改线性方程组有至少两组解,根据推论,我们知道其系数行列式为零,即:

解得

6. ✧ 矩阵 A B 形式如下,且

,则行列式
=
_______

:: 考察矩阵运算及 特殊矩阵 方阵的行列式运算性质及与行列式运算的区别。

直接代入运算,先将括号里面的矩阵加起来:

得到最终的行列式形式后,进行行列式的运算:

7. ✧*设A为三阶方阵,且

,则
=______

:: 考察伴随矩阵的性质和矩阵行列式的运算

首先我们知道,根据伴随矩阵的性质,

( 其中I为单位矩阵)。而条件中知道方阵
A的行列式等价于3,也即3等价于方阵A,故

8. ✧求矩阵(方阵)

的逆矩阵。

:: 方法一:伴随矩阵法

,需要计算对应行列式值和方阵的伴随矩阵;方法二:分块矩阵,分块后转化成类三角矩阵形式利用分块矩阵的运算性质解决;方法三:初等变换构造法。

这个题当然是用方法二较快,沿井字划分后的情况是,元素2、9分别单独作一个分块矩阵,最中间四个元素作为一个分块矩阵(更巧的是它的逆矩阵就是本身),一阶矩阵等价于数其逆矩阵就取倒数即可(结论:对角矩阵逆矩阵也即对角线上各元素分别取倒数)。不过法三、法一是通用的,且伴随矩阵的计算法和性质都需要掌握,所以都得会。

给个答案:

9. ✧设四级方阵A的秩为2,则其伴随矩阵

的秩为 ________

:: 考察伴随矩阵的运算及秩的性质

对于n阶方阵A

答案:0

10. ✧若n阶可逆矩阵A的各行元素之和均为常数3,则矩阵

有一个特征值为:

:: 考察运算及特征值性质
由各行元素之和均为3,取

,代入
易检验
成立,3为矩阵A的一个特征值。

而对于 A的特征值为
,其变换
的特征值也为
,其中单位矩阵
~1

此题变换
代入得C选项

答案为C

11. ✧若A,B为n阶正交矩阵,判断AB,2A是否为正交矩阵。

:: 考察正交矩阵的性质及定义

小复习 ->给定n阶正交矩阵A有以下特征:A必须是方阵,

A的列向量都是单位向量并且两两正交(行同理)
也都为正交矩阵

n维向量左乘 A的变换叫正交变换,其变换前后向量的范数(长度)保持不变

解题:对AB,2A进行变换用定义去检验

可见
AB是正交矩阵
可见
2A不是正交矩阵

12. ✧向量

的长度分别为4和3则内积
________

:: 向量的运算和内积运算

13. ✧设方程组只含一个方程为:

,则此方程组的基础解系含有____个解向量。

:: 考察齐次方程组系数矩阵与基础解系的关系


找到一篇不错的文章,其行文思路也具有一定启发性,适合做基础复习和加深理解
(英文的阐述尤好,可别害怕图片中的英文):

梁勇:干货 | 万字长文带你复习线性代数!​zhuanlan.zhihu.com
7c2f4ac1d15f3c4d4ea64c770e470f29.png

如果错误还请您宽宏大量 不吝赐教 指点一二,小生不胜感激。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值