arima模型 p q d 确定_【干货】时间预测之 ARIMA模型

ARIMA 是 AutoRegressive Integrated Moving Average的简称,看起来很复杂,其实这个模型本身是多个模型的叠加或者说混合;

a5c429382819dc65075929001a218cf2.png

AR: 自相关模型(AutoRegressive)

MA: 移动平均模型(Moving Average)

I:差分的逆过程(差分的逆过程)

一般我们表达为:ARIMA(p,d,qp,d,q) 模型,其中:

p=p=自回归模型阶数
d=d=差分阶数
q=q=移动平均模型阶数

使用ARIMA模型预测数据的主要步骤包括:

  1.  序列平稳化

  2. 确定d参数

  3. 画出acf和pacf图,确定p参数和q参数

  4. 使用找到的参数拟合ARIMA模型

  5. 在验证集上进行预测

  6. 评估预测效果

对于一个未知的序列,找到模型的这三个参数是关键,有两种方式来找出这三个参数;

手工找出参数的基本步骤

  1. 序列平稳化,确定d参数

  2. 画出acf和pacf图,确定p参数和q参数

有关平稳化、单位根校验、acf图和pacf图的基础知识,已经在前三篇进行了介绍,这里就不再赘述。

d参数在序列平稳化处理的时候,能够找出来;

1

手动确定自相关系数和平均移动系数(p,q)

p参数和q参数在画出acf和pacf图的时候可以找出来;

AR(p)        MA(q)        ARMA(p,q)

ACF        趋势衰减        q阶后截尾        趋势衰减

PACF        p阶后截尾        趋势衰减        趋势衰减

还是air Passenger的数据

dbb0f8cf123004d7c996159d9d9535eb.png

通过上面两篇介绍的序列平稳化的方法,我们这里对数据进行了对数化和差分化:

c7f4e9bd7d3eee4d1772cc70258bb086.png

通过单位根校验,p-value只有0.0047,小于1%对应的阈值,所以可以认为是稳定的序列;

接下来开始选择p和q参数,画出序列自相关图和偏自相关图

8be580b4482ca693aaca1f544b7b2b6c.png

从图中可以看到,p选择1,q选择2是不错的选择;

755c6e3c7af3b40a738ef0a3096e3d73.png

2

自动确认参数

自动参数确认的实现就比较简单了,有现成的函数可以调用,

eb70362e43e9975174cc2bbc18ad6675.png

可以看到自动选择的时候,选择器为我们选择了p=2,q=3

对于自动选择的参数和手工选择的参数不同的情况,我们可以暂时不管,继续向下看;

3

模型训练

模型的训练可以说是非常的简单

b0333d3b61583e15461c7acafd5fcb89.png

我们拿到模型的残余项,来检测残余项是否是稳定的

2cd438fe289514c87404785c1a99db26.png

618a6834eb59ba4088cf6c4573dcc39d.png

41255b680899bc5c1fbb7ded3a97384d.png

可以看到残余项符合均值为0的高斯分布,因此我们认定这个模型效果还不错;

4

检测实际效果

接下来我们将数据拆分为训练集和测试集,来实际检验一下效果:

6113906b27cffd8a9373b6d18ffb6727.png

可以看到预测的效果,其实还不错;

5

对比两个参数

这是我们用手工选择的p,q参数进行的预测,我们还有一个自动选择的p,q参数,我们也可以试一下自动选择的p=2,q=3的效果,只需要改一下参数

e73bb5a8e3040595e30de406da939e44.png

得到这样的效果图,其实肉眼就可以看出来,这组参数并没有手工选择的参数效果好;

剩下的就是将图形还原:

def inverse_diff(original, diff):    lag = len(original)    o_s = list(original)    for i in range(len(diff)):        o = diff[i] + o_s[i]        o_s.append(o)    return np.array(o_s)
plt.plot(np.exp(log))plt.plot(np.arange(train_size+9, train_size+test_size+9), np.exp(inverse_diff(np.log(pgs)[train_size-9:train_size], np.concatenate(predictions))[9:]),"r-")plt.show()

4357d704e4dad0a26979189be0197bae.png

  • 29
    点赞
  • 189
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
确定ARIMA模型的p、d、q值的最常用方法是使用自相关函数(ACF)和偏自相关函数(PACF)的图形分析。具体步骤如下: 1. 首先,对于时间序列数据,可以通过绘制原始数据的图形来确定d值。如果数据趋势不稳定,需要对其进行差分,直到数据变得趋势稳定。差分的次数就是d值。 2. 接下来,对于差分后的数据,可以绘制ACF和PACF图形。 3. 根据ACF和PACF图的规律,来确定p和q的值。具体规律如下: - 如果ACF图在滞后k处截尾,并且PACF图在k处截尾,那么可以选择ARIMA(p,0,q)模型,其中p=k,q=k。 - 如果ACF图在滞后k处截尾,并且PACF图在k+1处截尾,那么可以选择ARIMA(p,0,q)模型,其中p=k,q=k+1。 - 如果ACF图在滞后k处截尾,并且PACF图呈现出指数型下降的趋势,那么可以选择ARIMA(p,0,q)模型,其中p为ACF图在滞后k处开始截尾的位置,q为PACF图中第一个超出置信区间的位置。 - 如果ACF图呈现出指数型下降的趋势,并且PACF图在滞后k处截尾,那么可以选择ARIMA(p,d,q)模型,其中d为差分次数,p为PACF图在滞后k处开始截尾的位置,q为ACF图中第一个超出置信区间的位置。 - 如果ACF图和PACF图都呈现出指数型下降的趋势,那么可以选择ARIMA(p,d,q)模型,其中d为差分次数,p为PACF图中第一个超出置信区间的位置,q为ACF图中第一个超出置信区间的位置。 以上是确定ARIMA模型p、d、q值的一般步骤,你可以使用Python中的statsmodels库中的acf和pacf函数来绘制ACF和PACF图形,并根据图形规律来确定p、d、q值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值