群同态基本定理证明_Abel群结构定理

1.Abel群

是一个非空集合,我们可以在其上定义一种运算(例如加法,乘法),它将其中的两个元素结合成为另一个元素,我们称之为
合成法则.合成法则是一个映射:
.(注意:一个集合上有某个合成法则蕴含了这个集合满足对这个合成法则的封闭性).由于我们需要讨论Abel群的结构,使用加法会使记号更加方便,因此本文选取加法为合成法则.若如此做,合成法则的加法
结合律指:
,
交换律指:
.有了合成法则,我们便可以定义
的概念.

我们称带有合成法则的集合

为一个
,如果它满足:
  • 合成法则满足结合律.
  • 使得对
    ,均有
    .
  • ,均
    ,使得
    .

我们通常称上述的

加法幺元.如果这个合成法则还满足交换律,那么我们就称这个群为 Abel群.如果集合
含有有限个元素,我们便称它为有限群,并定义其中的元素个数为这个群的
.

的子群
是一个对合成法则封闭,含有幺元,且每个元素的逆元都在其中的子集.

需要注意的是,上述的加法仅仅只是作为众多合成法则的一个代表,类似的我们同样可以定义乘法群.

例如,所有的整数构成的集合在通常的加法合成法则下为一个Abel群.所有的正有理数在通常的乘法合成法则下成为一个乘法Abel群.

有一类特殊的群,我们称之为循环群.若群

带有加法合成法则,那么群
循环群,如果他满足:
,使得对
均有
.(其中包含非负整数次加法).同时,我们称元素
为群
的生成元,元素
生成群
.

本文要做的就是讲所有的Abel群进行分类,由于群所具有的性质相对较少,仅仅依靠群的公理还无法做到对Abel群进行分类,因此我们需要更多的工具.

2.交换幺环

在这里,我们不给出环的最初定义,而直接给出交换幺环的概念,这对本文来说已经足够使用了.

我们称一个集合

为一个
交换幺环,如果它满足:
  • 在加法的合成法则下,
    为一个Abel群.
  • 中的乘法合成法则是
    交换的和结合的,且具有乘法幺元
    .
  • 分配律:对
    ,
    .

我们研究的最多的交换幺环的便是整数集合

和域
上的多项式环
了.

在不引起混淆的情况下,我们下面讨论的环都是指的交换幺环.

3.模

模是一个全新的代数结构,为了 便于理解,我们可以将它看做为环上的向量空间.

是一个环,
是一个加法Abel群,我们称
是一个
模,如果存在一个映射:
,且满足:

对任意的

均成立.

显然,我们可以将域

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值