群同态基本定理证明_群表示论笔记(三)

这一节我们考察酉表示。我们考虑群

作用于一个厄密空间(Hermitian Space),这是一个带有一个正定的厄密型的复线性空间。

我们知道,一个满足

的线性算子
叫做酉算子,其对应的矩阵叫做酉阵。如果我们给定了群
的一个表示
。并且
,那么我们称
是酉表示。同样,我们称同态
是酉阵表示。我们有如下引理:设
在一个厄密空间上的酉表示,设
是一个
-不变子空间,那么其正交补空间
也是一个
-不变子空间。因此
是自身在厄密空间
上限制的直和,并且这些限制也是酉表示。

下面给出证明:根据线性代数的知识,

,由于
是酉表示,其不改变正交。那么我们任取
,那么
,因此
,因为
,且由于
的任意性,则
,由于
的任意性得到
-不变子空间。其限制是酉表示是显然的。

由于,

,结合归纳法不难得到推论:所有酉表示都是不可约表示的正交和。

我们把目光转到型(

)上,如果一个厄密型始终满足
,那么称这个厄密型是
-不变的。在
是一个厄密空间时,这和称一个表示是酉表示是相同的。

我们下面证明这个定理:

是一个有限群在线性空间
上的表示,那么存在一个正定且
-不变的厄密型。

证明:

我们任取一个正定的厄密型{,},然后定义:

f71a0025faf3250a963824fe83405268.png

容易验证

确实是满足正定,厄密型的要求。下面说明其确实是
-不变的。实际上和上一节的证明几乎是一样的。我们任取群元素
,我们知道左乘
或者
定义了一个
的双射,再左乘g相当于重新排序,不影响最后的结果,我们记
:

0729283c7725bbc30500e4350b6a6d3e.png

这个定理有许多推论:首先,Maschke's Theorem就是这个定理的推论,因为我们总可以找到一个

-不变的厄密型,我们就可以把这个表示看作若干子空间上的限制的正交和,自然也就是直和。

其次,我们可以找到一组

的基
使得
对应的矩阵表示是酉的,这组基自然是这个厄密型下的正交基。同样,假如
的矩阵表示,则存在可逆阵
,使得对于任意
都是酉阵。

最后,所有

的有限子群都共轭于酉群
的一个子群。

我们也可以利用这些结论证明

中的有限阶矩阵(这里的阶不是说矩阵的行列的个数,而是指作为一个群元素的阶,也就是存在一个正整数
,使得
)都是可以对角化的。我们任取其中的一个有限阶的矩阵
都可以生成一个循环的有限子群。那么其共轭于一个
的子群,由于酉阵都可以对角化,那么
可以对角化。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值