群同态基本定理证明_高中生也看得懂(并不)的群表示论(1)

acd9b1da60adbfc69e18c256f6aa37e1.png
题记:群表示论总算结课了,从第一次期中的全班中位数55到最后结课全班中位数88,只能感谢老师的curve了吧(逃)。

是根据自己这学期笔记来的,如有错误,还请斧正。在部分地方中,我会假设读者需要一定的代数基础,这部分将会被括号中的减号特殊标记出来,i.e. 第X章(-),例子X(-)或者证明(-)。在全部章节中,我会假设读者会一定的英语基础并且大部分的定义和理论会有英文名字介绍(只是为了防止有时候我懒得说中文)。

同时,标题的所谓看懂,大概只是高中生也能顺着看,看到名词也能知道是个什么意思(其中不包括线性代数部分的相关知识)...所以大概有点标题党的嫌疑吧? 我会试着尽量讲清楚,不过我也不知道什么时候会出现知识的诅咒这种情况。In particular,有抽代基础直接跳过-1章就是了。

第-1章

定义0:(笛卡尔积)考虑集合

,那么他们的笛卡尔积是

定义1:(Group/群)一个群

是一个二元组
,其中
是一个集合,
是一个映射满足下属条件
  • 对于所有
    ,我们有
  • 存在一个
    ,对于所有
    ,我们有
  • 对于所有
    ,存在一个
    ,我们有

定义2:(Group homomorphism/群同态)考虑群

,那么
是一个群同态如果对于所有的
,我们有

定义3:(Group isomorphism/群同构)如果一个group homomorphism同时是双射的话,那么我们说它是group isomorphism。

定义3.1: (Embedding)如果一个group homomorphism是单射的话,我们说它是an embedding.

例子1:考虑

,那么
不是一个群,因为
。另一方面呢,
是一个群,但是
不是一个群。同时,考虑
,其中
是所有的从
的双射的集合,
是函数的复合,那么
是一个群。

在这之后,我们不会那么详细的把一个群写为

,而是默认
是一个拥有一个二元映射的集合。

定义4: (Subgroup/子群) 一个群

的子群
是一个
的子集,其中
,并且对于所有的在
,我们有
,i.e.
本身在
下是一个群。

定理1: (Cayley's Theorem) 任何一个有限群

都同构于一个
的子群。
证明: 要素(指网上的证明)过多,略过。

例子2: 百度百科上的二面体群(dihedral group)[1]。维基百科上的二面体群[2]。其中,我们会使用

的那一套notation,而不是

差不多到这里就足够了吧...吧?

3878b01427bdb92b9781a7b4088f9bc9.png

然后发现忘记讲线代101了,思考了一下,知乎上每天抓着我头放线代入门的讲座广告,大概这方面要搜索应该也不难吧...所以直接放弃(逃。

第0章

为什么我们需要群表示论?来理解这个问题,我们其实首先需要对群表示论有一个基础的认知才能来回答这个问题,但是,简单的来说,

  • 第一,群表示论把(任意的)有限群放在了在矩阵的上下文里面,也就是说,把群里的每一个元素看成一个矩阵,然后因为我们对于矩阵的理解明显深于我们对于任意有限群的理解,所以群表示论能够让我们通过矩阵去来研究这些群的一些性质。
  • 第二,群表示论会自然地出现在很多的地方[3]。考虑有限Galois扩张
    和其对应的Galois群G,那么
    作用在
    上,注意
    能被考虑为一个有限的K上的线性空间。那么也就是说,
    上的群作用是
    线性的,i.e. 这是一个degree为n的群表示。

接下来,让我们试着自然的引导出群表示这一概念:

在大部分学校的抽象代数这一门课里面,我们有下述定理:

Cayley's Theorem(凯莱定理): 任何一个有限群
with
都同构于对称群
的子群。

为上述Cayley theorem中的同构,我们考虑一个n维的
上的向量空间
和它的一组基
,记
的一般线性群, i.e.
是所有V到V上的可逆线性映射的集合(with function decomposition operation to make it a group)。那么,定义
,其中
。于是我们便获得了一个从
的一个embedding。那么,因为
都是单射,我们有
也是一个embedding。换句话说,我们成功的把一个任意的有限群给镶嵌进了V的一般线性群里(而不严谨的来说,在我们这个上下文中,这个一般线性群就是由矩阵和矩阵乘法构成的群)。

第1章

定义0:对于线性空间

的一般线性群
是所有
上的可逆线性映射的集合,和函数复合作为二元运算组成的群。

定义1:(representation/表示) 让

为有限群,
为有限维的
上的线性空间,那么一个
的representation
是一个从
的group homomorphism。

注意,当我们讨论一个群表示的时候,其中的那个线性空间是必不可少的。同时,在大部分情况下,我们只会考虑复数域上的群表示,但是我们必须指出,群表示论也可以在其他的域上成立。举例来说,第二章的Maschke's Theorem的群代数/模形式只需要我们群表示中的域的特征不整除

就可以成立。

定义2: (degree) 让

为一个
的群表示,那么这个群表示的degree是
的维度/dimension。

接下来是一堆的例子。

例子1: 考虑

,其中对于所有的
, 我们有
。这是一个(很无聊的)群表示。

例子1.1:考虑

,其中对于所有的
, 我们有
。这是一个(不那么无聊的)群表示。

注意,例子1和1.1描述了一组群表示,我们称之为trivial representations。但是,当我们讨论"the trivial representation"的时候,我们指的是例子1中的那个。

例子2: 我们把由Cayley's Theorem引导出来的那个第0章的(那一种)表示称之为regular representation[4]。注意,我们定义的regular representation是非唯一的,因为它取决于一个基。

注意regular representation必然有degree 等于

例子3(-): 对于有限群

,让
为任意集合,让
是一个维度为m的复数上的线性空间,并且有一组基是用
来标号的 (也就是说我们可以把
看成
的一组基),i.e.
。那么假设
作用在
上,那么我们就获得了一个群表示
,其中
。这个被称之为permutation representation,并且注意这个permutation representation并不是唯一的,它取决于我们使用的群作用。

例子4(-): 考虑

,我们有群表示
,其中
是二维的复数上线性空间,以及
,
,其中
是一个任意的五次单位根。

定义3: 我们定义两个

的群表示
是同构(isomorphic)的,如果存在一个线性空间的同构
,使得对于所有的
,
。在这种情况下,我们写做

注意,这个同构的定义是合理的,因为第一,在这个定义中,我们要求了两个线性空间必须要拥有相同的维度。第二,如果两个群表示满足上述条件,那么不难看出

是相似的线性映射,因为
是可逆的线性映射。而很多时候我们是满足于相似的线性映射的,因为他们分享有很多相似的性质,比如说trace(迹),特征值,行列式,特征多项式,etc.

例子5:假设

,让
为两个
的regular representation。那么
。换句话说,虽然regular representation不是唯一的,但是在同构的意义下,我们只有一种regular representation。

第2章

定义1:让

为一个representation,让
的一个子空间。如果
[5]
,那么我们说
是G-stable或者G-invariant。

注意G stable是依赖于一个确定下来的群表示的,也就是说,我们不能抓着一个群就讨论G stable subspaces。同时,如果我们有两个在V上的不同的群表示,那么它们可能会有不同的G stable subspaces。

定义2:让

为一个representation,
为G-stable的V的子空间,那么我们就获得了一个subrepresentation(子表示),通过限制
。更加细致地来说,如果
是G stable,那么
是一个良好定义的(子)表示。我们称
是一个rho
的subrepresentation。

定理1:(Maschke's Theorem)让

为一个representation,让
的子空间,并且
为G stable。那么存在一个G stable 子空间
,并且
证明(-): 对于任意的复数域上的n维线性空间
,都存在至少一个内积,因为
,而
显然拥有至少一个内积,也就是我们所熟悉的点积。所以,我们可以认为
是一个内积空间,内积为
。接下来,我们定义一个新的内积
。不难看出
[6]这是一个良好定义的内积。
同时,注意对于任意的
,我们都有
,所以在这个内积下,每一个
都是一个幺正算符/酉算符/unitary operator。所以,我们有
,其中
的adjoint(伴随算子?),或者在矩阵的语境下,就是共轭转置。

假设
是G stable,那么我们让
在我们定义的内积下的正交补。我们将会证明
是G stable,那样证明就完成了,因为
是正交补的定义之一。

,那么因为adjoint的性质我们有
,同时,注意(根据adjoint的性质和homomorphism的性质)
,其中
,因为
stable的。所以,我们有
,因为
。所以
. The proof follows。

通过上述定义,我们注意到任意一个group representation都能被拆分成一堆的subrepresentation。这就好像在线性代数中,我们能把我们的线性空间拆成一堆大小不一的子空间,而我们最小的非平凡的子空间就是维度为一的子空间,这些子空间就成为了我们构建一个线性空间的建筑砖块。观察这些线性子空间,我们意识到,当线性空间V的维度为一的时候,它只有两个子空间,第一个是它自己,第二个是0空间。

类似的,当我们尝试去划分出一些构建群表示的建筑砖块的时候,我们会想要让这些建筑砖块拥有类似的性质,i.e. 不可分解性。

定义3:当我说群表示的direct sum的时候,就李姐[7]为是,根据Maschke定理,我们能把V拆成两个G stable子空间的direct sum,所以整个群表示也能被拆成两个子表示的直和。

注意,一个稍微严谨一点的定义(从我的笔记里截图,因为知乎甚至不支持直接复制粘贴latex code,太菜了)如下:

82778428cc952d394b2027d2b18ddf97.png

定义4: 一个群表示

是irreducible的,如果
,并且它只拥有它自身和
为它的G stable子空间。

定理2:每一个群表示

都是irreducible subrepresentations的direct sum。
证明:通过Maschke's,我们在V的维度上用数学归纳法可得。

例子1:考虑

,其中
为标准基,以及
。 注意这并不是regular representation,因为它的degree并不是6。考虑
,这是一个G stable的子空间,并且
是isomorphic to the trivial representation的,其中
。另一方面,注意
也是G stable的,并且我们有
。所以,我们成功的把
分解成了两个子表示的direct sum。

参考

  1. ^有点懒.jpg https://baike.baidu.com/item/%E4%BA%8C%E9%9D%A2%E4%BD%93%E7%BE%A4/18898119
  2. ^嗯,我太懒了 https://zh.wikipedia.org/zh-cn/%E4%BA%8C%E9%9D%A2%E9%AB%94%E7%BE%A4
  3. ^下面这个例子的来源 https://sites.math.washington.edu/~mitchell/Algf/whyrep.pdf
  4. ^这就是正则表达式的弟弟,正则表示(大雾)
  5. ^如果你不知道下面那些符号什么意思的话 https://baike.baidu.com/item/%E6%95%B0%E5%AD%A6%E7%AC%A6%E5%8F%B7#2_8
  6. ^不难看出我很懒
  7. ^无慈悲
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值