计算机视觉知识表征,计算机视觉基础题目

本文介绍了颜色的三要素——亮度、色调和饱和度,以及它们在图像处理中的作用。接着,探讨了HOG(方向梯度直方图)特征的优缺点,特别是其对光照变化和图像形状信息的描述能力。同时,对比了RANSAC和最小二乘法在模型拟合上的差异,强调了RANSAC在处理噪声和去除离群点方面的优势。
摘要由CSDN通过智能技术生成

1. 颜色的三要素(three elements of color):亮度(明度)、色调(色相)、饱和度(纯度)为颜色的三属性,又称颜色的三要素。

2. 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征:

HOG特征对光照不敏感;

HOG是在图像的局部方格单元上操作,所以它对图像几何的和光学的形变都能保持很好的不变性;

HOG表示的是边缘(梯度)的结构特征,因此可以描述局部的形状信息;

位置和方向空间的量化一定程度上可以抑制平移和旋转带来的影响;

采取在局部区域归一化直方图,可以部分抵消光照变化带来的影响;

由于一定程度忽略了光照颜色对图像造成的影响,使得图像所需要的表征数据的维度降低了;

由于它这种分块分单元的处理方法,也使得图像局部像素点之间的关系可以很好得到的表征。

缺点:速度慢,实时性差;很难处理遮挡问题;由于梯度的性质,该描述子对噪点相当敏感。

3. RANSAC和最小二乘法:

两者的共同点都是要首先确定模型,模型分为线性模型与非线性模型。一般常见的应用是线性模型,如 f(x) = kx + t

在应用上,二者的差别是,least squares对噪声比较敏感,算法简单。而RANSAC能去除一些噪声的干扰,如果假定模型与实际的情形一致,那么一般由观测数据计算的RANSAC模型,更能接近实际情况,去除观测或过程噪声干扰,算法稍微复杂些(对噪声不敏感)

RANSAC的线性拟合算法步骤大致如下:

while 最大尝试次数

从观测点集中随机取两点,计算出直线的参数k, t(或者k用向量表示),得出一个候选的直线模型。

计算候选直线与整个点集的匹配程度,可以采用统计在直线上(或到直线的距离小于一个阈值)的点的个数。

保留匹配程度最好的直线的参数。

如果本次尝试匹配点的个数占整个点集大部分,超出预期(阈值),提前结束尝试。

endwhile

匹配程度也可以用其他指标来衡量,替换上面的匹配计算。

最小二乘法,也可以先进行去除离群点的数据预处理,应用RANSAC或穷举的方法,利用任意两点计算一条直线,将距离直线太远的点设置为离群点,距离直线较近的点为符合条件的点。循环处理,比较群内点的个数,记录下群内点数最多的集合。 这些点就是 去除离群点的点集合,利用这些点再进行最小二乘法拟合。

4.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值