1. 颜色的三要素(three elements of color):亮度(明度)、色调(色相)、饱和度(纯度)为颜色的三属性,又称颜色的三要素。
2. 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征:
HOG特征对光照不敏感;
HOG是在图像的局部方格单元上操作,所以它对图像几何的和光学的形变都能保持很好的不变性;
HOG表示的是边缘(梯度)的结构特征,因此可以描述局部的形状信息;
位置和方向空间的量化一定程度上可以抑制平移和旋转带来的影响;
采取在局部区域归一化直方图,可以部分抵消光照变化带来的影响;
由于一定程度忽略了光照颜色对图像造成的影响,使得图像所需要的表征数据的维度降低了;
由于它这种分块分单元的处理方法,也使得图像局部像素点之间的关系可以很好得到的表征。
缺点:速度慢,实时性差;很难处理遮挡问题;由于梯度的性质,该描述子对噪点相当敏感。
3. RANSAC和最小二乘法:
两者的共同点都是要首先确定模型,模型分为线性模型与非线性模型。一般常见的应用是线性模型,如 f(x) = kx + t
在应用上,二者的差别是,least squares对噪声比较敏感,算法简单。而RANSAC能去除一些噪声的干扰,如果假定模型与实际的情形一致,那么一般由观测数据计算的RANSAC模型,更能接近实际情况,去除观测或过程噪声干扰,算法稍微复杂些(对噪声不敏感)
RANSAC的线性拟合算法步骤大致如下:
while 最大尝试次数
从观测点集中随机取两点,计算出直线的参数k, t(或者k用向量表示),得出一个候选的直线模型。
计算候选直线与整个点集的匹配程度,可以采用统计在直线上(或到直线的距离小于一个阈值)的点的个数。
保留匹配程度最好的直线的参数。
如果本次尝试匹配点的个数占整个点集大部分,超出预期(阈值),提前结束尝试。
endwhile
匹配程度也可以用其他指标来衡量,替换上面的匹配计算。
最小二乘法,也可以先进行去除离群点的数据预处理,应用RANSAC或穷举的方法,利用任意两点计算一条直线,将距离直线太远的点设置为离群点,距离直线较近的点为符合条件的点。循环处理,比较群内点的个数,记录下群内点数最多的集合。 这些点就是 去除离群点的点集合,利用这些点再进行最小二乘法拟合。
4.