已知坐标求方位角_震惊,up主居然能默写球坐标拉普拉斯算子!

83731fe3702552f3edb6e75e00c6ef6d.png

首先说明一下,我并不是标题党(滑稽.jpg),既然起了这个标题,就一定会教大家怎样默写球、柱坐标下的拉普拉斯算子、散度旋度这样根本记不住的东西,不过在这之前,我们需要回顾或者了解一些知识,当然直接跳到后面去看我也拦不住(滑稽.jpg)。

首先介绍有向线元

(简称线元),其定义是坐标系中位置矢量
的全微分 ,相信位置矢量和全微分就不用我介绍了。显然,
是一个矢量,在我们熟悉的直角坐标系中,它可以写作:


三个分量的方向就是直角坐标的基矢方向,这没有什么问题。首先,微分是线性算符,其次,直角坐标的基矢不会随坐标参数变化,因此有:

但是在一个任意的曲线坐标系(q1,q2,q3)中又是怎样的情形呢?根据线性空间的维数我们知道

仍然是三个分量的线性组合。只是此时基矢是随参数变化的(不然只是另一套直角坐标),即每一个点都有一套对应的基矢,于是我们称其为局域基矢(此处
为单位基矢):

不同的基,系数

也不一样,为了能够统一,我们就都取自然(局域)基矢
,此时的
就称为Lamé系数。对比全微分:

不难得出

,即
的模长,表示线元在
方向分量大小与坐标参数增量
的比值,同时
的量纲不一定是长度了,因此
也起到量纲长度化的作用,方便我们记忆。(这里我们给
再起个名字叫
长度元素 ,一会就知道用处了)

不妨来求一下球坐标的Lamé系数:

c720bd3347981a3ccee0780467d40b65.png

球坐标位矢为

,参数
分别表示矢径长、仰角、方位角,基矢
为对应参数自然基矢的单位矢。将
分解到三个基矢方向上,显然
方向是矢径长的增量
方向是矢径在一条经线上划过角度
的弧长
方向是矢径在一条纬线平面上的投影在该纬线上划过角度
的弧长
,因此有:


Lamé系数

有了Lamé系数,我们来重新认识下几位老朋友:梯度,散度,旋度。

首先是梯度,矢量算符

作用于标量场
,记作
,是个矢量,分量大小定义为
在该方向的方向导数,根据定义不难写出:

上式给出了任意曲线坐标下梯度算符的表达式。这个直接记忆并不难,但也有一定技巧:

首先

是矢量算符,先写出求和与三个基矢
;接着,由于分量是用方向导数定义的(同模矢量点乘,相等结果最大,梯度是方向导数最大的方向),我们先写出偏导数
要成为方向导数
分母要补上一个长度元素,变成
,所以:

散度要复杂一些,矢量算符

点乘矢量场
,表示单位体积内
通量的大小:


分子是个二重环路积分,
是有向面元,由于
,我们将其取为长宽高分别为
的小立方体,
(面元方向为法向量),
.每次取一组相对面进行积分,
结果可以表示为:


减法变为偏导再积分利用了牛顿——莱布尼兹公式(积分退化为乘法),
会随
变化所以要同
一起求导。最后约去体积元
得:

这个推导虽然略复杂但知道了定义再来记忆就极其简单了,首先

点乘,所以写出三项之和,每一项中
的分量乘
以一个面积元素,而且由通量的定义知二者互相垂直,因此面积元素是指标异于
的两个
之积:
;接下来在分量方向上偏导再积分,因此求偏导时约去了
,最后
整体除以体积元素
就好啦:),注意有个点哦。

相信聪明的你已经会默写任意曲线坐标的梯度和散度了,这样我们就可以进军拉普拉斯算子了!(滑稽.jpg)拉普拉斯算符是坐标的二阶偏微分算符,在球、柱坐标系中的形式比较复杂,却应用广泛。不过幸运的是我们有等式

,而且已经推导并会默写任意曲线坐标下的梯度算符和散度算符,只需要把他们像这样按顺序组合:

这是曲线坐标Laplacian的统一公式,对于具体坐标系代入坐标系的参量和Lamé系数就好了,比如球坐标:


柱坐标:

柱坐标是极坐标和直角坐标z轴的组合,因此Laplacian也是两者之和的形式。

怎么样,是不是超级无敌简单呢?妈妈再也不用担心我不会写球坐标薛定谔方程了!(尬笑.jpg)可能有些在做电动力学的小伙伴不乐意了,旋度呢?旋度还不会写嘤嘤嘤。莫方,章口就莱。

旋度,矢量算符

叉乘矢量场
,表示矢量场在单位面积边界上的有向环流量,其中
,由于积分是面上进行的,我们希望能够在坐标面上计算,正好旋度是矢量,根据定义我们可以分别在三个基矢方向计算,其中
时,有:

式中

,表示i,j,k按1,2,3的顺序轮换,这样一来,我们可以引入三阶全反对称张量单位张量
来化简:

这恰好是一个三阶行列式:

球坐标下:

注意由于 算符左作用的性质,这个行列式只能逐阶按第一行展开来计算。那么旋度如何记忆才能准确无误地默写呢?也很简单。

我们先按直角坐标的形式写出行列式

,由于有线积分,给第三行的场分量分
别乘以对应的长度元素;接着应该给结果的各分量除以对应的面积元素,但 为了凑出行列式,我们把除以面积元素变为乘以对应长度元素,再给结果整体除以体积元素(由于按第一行展开,长度元素就乘给第一行)。这样就顺理成章地写出:

有些外行总是问,那么复杂公式,科学家是怎么记住的?今天就让大伙体验一下科学的记忆方法。总结一下就是:一切从定义出发,摸清了其中的道理,用自己的语言概括简化,想不记住都难!聪明的你学会了吗?(笑容逐渐变态.jpg)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值