球坐标下的Laplace
∇
=
r
^
∂
r
+
θ
^
1
r
∂
θ
+
ϕ
^
1
r
sin
θ
∂
ϕ
Δ
φ
=
∇
⋅
∇
φ
=
∇
⋅
(
r
^
∂
r
φ
+
θ
^
r
∂
θ
φ
+
ϕ
^
r
sin
θ
∂
ϕ
φ
)
=
∇
(
r
2
sin
θ
∂
r
φ
)
⋅
r
^
r
2
sin
θ
+
∇
(
sin
θ
∂
θ
φ
)
⋅
θ
^
r
sin
θ
+
∇
(
1
sin
θ
∂
ϕ
φ
)
⋅
ϕ
^
r
=
1
r
2
∂
r
(
r
2
∂
r
φ
)
+
1
r
2
sin
θ
∂
θ
(
sin
θ
∂
θ
φ
)
+
1
r
2
sin
2
θ
∂
ϕ
∂
ϕ
φ
\nabla=\hat{r}\partial_r+\hat{\theta}\frac{1}{r}\partial_\theta+\hat{\phi}\frac{1}{r\sin\theta}\partial_\phi\\ \Delta\varphi=\nabla\cdot\nabla\varphi\\ =\nabla\cdot(\hat{r}\partial_r\varphi+\frac{\hat{\theta}}{r}\partial_\theta\varphi+\frac{\hat{\phi}}{r\sin\theta}\partial_\phi\varphi)\\ =\nabla(r^2\sin\theta\partial_r\varphi)\cdot\frac{\hat{r}}{r^2\sin\theta}+\nabla(\sin\theta\partial_\theta\varphi)\cdot\frac{\hat{\theta}}{r\sin\theta}+\nabla(\frac{1}{\sin\theta}\partial_\phi\varphi)\cdot\frac{\hat{\phi}}{r}\\ =\frac{1}{r^2}\partial_r(r^2\partial_r\varphi)+\frac{1}{r^2\sin\theta}\partial_\theta(\sin\theta\partial_\theta\varphi)+\frac{1}{r^2\sin^2\theta}\partial_\phi\partial_\phi\varphi
∇=r^∂r+θ^r1∂θ+ϕ^rsinθ1∂ϕΔφ=∇⋅∇φ=∇⋅(r^∂rφ+rθ^∂θφ+rsinθϕ^∂ϕφ)=∇(r2sinθ∂rφ)⋅r2sinθr^+∇(sinθ∂θφ)⋅rsinθθ^+∇(sinθ1∂ϕφ)⋅rϕ^=r21∂r(r2∂rφ)+r2sinθ1∂θ(sinθ∂θφ)+r2sin2θ1∂ϕ∂ϕφ
球坐标下的Laplace
最新推荐文章于 2024-12-25 16:09:23 发布