拉普拉斯算子的球坐标形式

本文探讨了拉普拉斯算子在球坐标系中的表示方法,通过微分形式不变性推导出关于 ( r ),( heta ),( phi ) 的偏导数关系,并进一步计算得出 ( frac{partial^2}{partial x^2} + frac{partial^2}{partial y^2} + frac{partial^2}{partial z^2} ) 在球坐标下的形式,为量子力学领域的研究提供基础。
摘要由CSDN通过智能技术生成

拉普拉斯算子的球坐标形式


球坐标与笛卡尔坐标的转换关系为:
{ x = r sin ⁡ θ cos ⁡ φ y = r sin ⁡ θ sin ⁡ φ z = r cos ⁡ θ \left\{ \begin {aligned} x &= r\sin\theta\cos\varphi \\ y & = r\sin\theta\sin\varphi \\ z &= r\cos\theta \end{aligned}\right . xyz=rsinθcosφ=rsinθsinφ=rcosθ

{ r = x 2 + y 2 + z 2 θ = arccos ⁡ z x 2 + y 2 + z 2 φ = arctan ⁡ y x \left\{ \begin {aligned} r &= \sqrt{x^2 + y^2 + z^2} \\ \theta &= \arccos\frac{z}{\sqrt{x^2 + y^2 + z^2}} \\ \varphi &= \arctan\frac{y}{x} \end{aligned}\right . rθφ=x2+y2+z2 =arccosx2+y2+z2 z=arctanxy

- ∂ r \partial r r ∂ θ \partial \theta θ ∂ φ \partial \varphi φ
∂ x \partial x x sin ⁡ θ cos ⁡ φ \sin\theta\cos\varphi sinθcosφ cos ⁡ θ cos ⁡ φ r \frac{\cos\theta\cos\varphi}{r} rcosθcosφ − sin ⁡ φ r sin ⁡ θ \frac{-\sin\varphi}{r\sin\theta} rsinθsinφ
∂ y \partial y y sin ⁡ θ sin ⁡ φ \sin\theta\sin\varphi sinθsinφ cos ⁡ θ sin ⁡ φ r \frac{\cos\theta\sin\varphi}{r} rcosθsinφ cos ⁡ φ r sin ⁡ θ \frac{\cos\varphi}{r\sin\theta} rsinθcosφ
∂ z \partial z z cos ⁡ θ \cos\theta cosθ − sin ⁡ θ r \frac{-\sin\theta}{r} rsinθ 0 0 0

根据微分形式不变性
∂ ∂ x = ∂ ∂ r ∂ r ∂ x + ∂ ∂ θ ∂ θ ∂ x + ∂ ∂ φ ∂ φ ∂ x \frac{\partial}{\partial x} = \frac{\partial}{\partial r}\frac{\partial r}{\partial x} + \frac{\partial}{\partial \theta}\frac{\partial \theta}{\partial x} + \frac{\partial}{\partial \varphi}\frac{\partial \varphi}{\partial x} x=rxr+θxθ+φxφ

依上表就有
{ ∂ ∂ x = sin ⁡ θ cos ⁡ φ ∂ ∂ r + cos ⁡ θ cos ⁡ φ r ∂ ∂ θ + − sin ⁡ φ r sin ⁡ θ ∂ ∂ φ ∂ ∂ y = sin ⁡ θ sin ⁡ φ ∂ ∂ r + cos ⁡ θ sin ⁡ φ r ∂ ∂ θ + cos ⁡ φ r sin ⁡ θ ∂ ∂ φ ∂ ∂ z = cos ⁡ θ ∂ ∂ r + − sin ⁡ θ r ∂ ∂ θ \left\{ \begin {aligned} \frac{\partial}{\partial x} &= \sin\theta\cos\varphi\frac{\partial}{\partial r} + \frac{\cos\theta\cos\varphi}{r}\frac{\partial}{\partial\theta} + \frac{-\sin\varphi}{r\sin\theta}\frac{\partial}{\partial\varphi} \\ \frac{\partial}{\partial y} &= \sin\theta\sin\varphi\frac{\partial}{\partial r} + \frac{\cos\theta\sin\varphi}{r}\frac{\partial}{\partial\theta} + \frac{\cos\varphi}{r\sin\theta}\frac{\partial}{\partial\varphi} \\ \frac{\partial}{\partial z} &= \cos\theta\frac{\partial}{\partial r} + \frac{-\sin\theta}{r}\frac{\partial}{\partial\theta} \end{aligned}\right .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值