三维旋转矩阵_三维重建中的旋转(Rotation)

本文探讨了三维重建中的关键元素——旋转矩阵,总结了旋转矩阵的性质及其在实际应用中的作用。介绍了单位正交基的概念,并利用李代数阐述了旋转的数学原理。同时提到了指数映射在旋转表示中的表达方式,并引用了视觉SLAM、Rodrigues旋转公式等相关资源,以及Hartley等人的Rotation Averaging研究。
摘要由CSDN通过智能技术生成

旋转在三维重建中是比较重要的,这里主要对旋转的性质及应用做一些总结。1. 旋转矩阵
设某个单位正交基

经过一次旋转变成了
。那么,对于同一个向量
(注意该向量并没有随着坐标系的旋转而发生运动),它在两个坐标系下的坐标为

由坐标的定义,有:

为描述两个坐标之间的关系,(1)左右两边同时乘以
,则有

其中
即为旋转矩阵。旋转矩阵的集合定义为:

由于旋转矩阵是正交阵,它的逆(即转置)描述了一个相反的旋转,则有
。显然,
刻画了一个相反的旋转。
2. 李群和李代数 (Lie Group and Lie Algebra)
这里我们只描述旋转空间上的 李群李代数
李群是指具有连续光滑性质的群。
在实数空间上是连续的。我们能够直观想象一个刚体能够连续地在空间中运动,所以他们都是李群。每个李群都有与之对应的李代数,李代数描述了李群的局部性质。旋转空间上的李群已经在公式(3)中做了描述。
2.1 旋转空间上的李代数推导
为某个相机的旋转,随时间连续变化,即
为关于时间
的函数
。由于
为正交阵,则有

等式两边对
求导,则有
。整理可得,

由(5)可以看出
是一个
反对称矩阵 (反对称矩阵的定义:
)。

而对于 反对称矩阵,我们总能找到一个三维向量
与之对应。一般地,
表示向量到反对称阵的变换。因此,我们有

对公式(6), 左右两边同时右乘
可得

公式(7)是一个形如
的常微分方程,对方程两边同时去倒数,则有
。显然,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值