矩阵为奇异工作精度_外积与复合矩阵,特征值/奇异值的乘积型受控,Hodge对偶与伴随矩阵...

cb715ddca442d4359e37b6a16da3ccfe.png
矩阵论记号约定​zhuanlan.zhihu.com
d930b648dac87ea06fda8fbcc8697e2f.png

外积与复合矩阵

  • ,则
  • [Gram行列式]
    ,其中

证明:直接计算可得

构成
的规范正交基,记
  • 构成规范正交基;注意

证明:任取

,有

  • ,任给规范正交基
    ,对于
    ,其中
  • 复合矩阵
    外幂
    的矩阵表示;
  • ;特别地,若
    ,则

证明:任取

,有

,则
  • [乘性]
  • [Cauchy-Binet公式]
    成立。

证明:

可得
  • 的奇异值为
    ,其中
    ,则
    ;从而
  • ,设
    的特征值为
    ,则
    ;从而[
    Sylvester-Franke]

证明:注意

,只需考虑方阵情形。取可逆矩阵
使得
为Jordan标准型,于是
;容易验证上三角矩阵的情形。
  • 的特征多项式为
    ,则

证明:展开

即知

特征值/奇异值的乘积型受控

  • [Horn[1]] 将
    的奇异值(计入
    )排列为
    ,则
  • 类比于Karamata不等式的证明过程,由
    单调性可得

证明:任取

,有

最后,

  • [Weyl] 设
    的特征值和奇异值分别为
    ,则
  • 从而

证明:任取

,由谱半径性质可得
。最后,

Hodge对偶与高次伴随矩阵

注意到

,尝试定义同构(
Hodge星算子)
,适合
,其中
表示
体积单位;只需对
定义
,其中
映射为
逆序数。易见
,且对
  • ,则
    ,其中
    代数余子式
  • 伴随矩阵
    的矩阵表示;
  • 可得

证明:任取

,有

  • 可逆,则

证明:应用Laplace展开[任取

,有
]即可。

参考

  1. ^https://wj32.org/wp/2015/12/29/horns-inequality-for-singular-values-via-exterior-algebra/
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值