

外积与复合矩阵
- 设
,则
;
- [Gram行列式]
,其中
;
-
。
证明:直接计算可得
设
-
构成规范正交基;注意
。
证明:任取
- 设
,任给规范正交基
和
,对于
有
,其中
;
- 复合矩阵
是
的矩阵表示;
-
;特别地,若
,则
。
证明:任取
设
- [乘性]
;
- [Cauchy-Binet公式]
对
成立。
证明:由
- 设
的奇异值为
,其中
,则
;从而
。
- 若
,设
的特征值为
,则
;从而[
。
证明:注意
- 记
的特征多项式为
,则
。
证明:展开
特征值/奇异值的乘积型受控
- [Horn[1]] 将
的奇异值(计入
)排列为
,则
;
- 类比于Karamata不等式的证明过程,由
单调性可得
。
证明:任取
最后,
- [Weyl] 设
的特征值和奇异值分别为
和
,则
;
- 从而
。
证明:任取
Hodge对偶与高次伴随矩阵
注意到
- 设
,则
,其中
是
的
- 伴随矩阵
是
的矩阵表示;
- 由
可得
。
证明:任取
-
;
- 若
可逆,则
。
证明:应用Laplace展开[任取
参考
- ^https://wj32.org/wp/2015/12/29/horns-inequality-for-singular-values-via-exterior-algebra/