如何让梯形变成平行四边形_开讲啦——平行四边形的面积教学案例分析

13cbe07964ed6b7138b57d5b62715902.png67105ca9c75a55c5bb38b49c3dca8747.png

《平行四边形的面积》教学案例分析

各位老师,在我们的“五问·五动”教学实施过程中,经常会遇到这样或那样的困惑和问题。下面,就让我们一起借助《平行四边形的面积》一课来进行“切片”式分析,希望能够为老师们解开心中的疑惑,指明今后教学的方向。

01

教学困惑

7168f4f59098e29caaadc07f99dbb7a2.gif

怎样创设学生感兴趣的教学情境?

7168f4f59098e29caaadc07f99dbb7a2.gif

如何在教学中真正让学生动起来?

7168f4f59098e29caaadc07f99dbb7a2.gif

如何真正的以生为本?              

c2bab9426de95e6db1099e0b1034611d.gif

如何打造学生需要的课堂?        

02

教学内容

《义务教育教科书·数学(五年级上册)》65—66页,《平行四边形的面积》。

03

教学目标

1.通过数一数、剪一剪、拼一拼的方法探究平行四边形的面积,理解并掌握平行四边形的面积计算公式。

2.能运用平行四边形的面积公式,解决简单的实际问题。

3.在问题——猜想——验证——总结——应用的过程中,培养观察、操作、分析、概括、推导能力,渗透转化的思想方法,发展学生的空间观念。

04

学情分析

学生在认识了平行四边形的基础上进行的教学,学好本节课的内容将为学生后面探究三角形的面积梯形的面积公式打下基础。教材呈现的是“安装玻璃”的情境,出示平行四边形的玻璃,引导学生探究平行四边形的面积。为了符合本年级段学生的兴趣点,本节课将我以小故事导入。

05

教学重难点

教学重点:探索并掌握平行四边形的面积计算公式。

教学难点:通过割补的方法,把平行四边形转化成长方形,找到长方形与平行四边形的关系,从而顺利推导出平行四边形面积计算公式。

‍ ‍

06

案例分析

‍‍

片段一:创问——创设情境,生成问题

1.故事引入,激发兴趣。

师:上课之前,老师先给同学们讲一个数学小故事,今天要学习的内容就蕴藏其中。古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。

师:想知道哪块地的面积大些?

预设生:可能是长方形(平行四边形)地面积大。(或者一样大)

师:该怎么办呢?你们有什么好方法?

2.提出猜想,揭示课题。

师:想一想,要怎样才能知道哪块地的面积大些?预设生:可以先算出两块地的面积,再比较。你们感觉可行吗,可真是个不错的主意。

师:那么,长方形地的面积,要怎样算呢?

预设生:要先量出长方形地的长和宽,然后运用长方形的面积公式求出面积。

师:讲得很好,请你告诉大家长方形的面积公式是什么?(板书:长方形的面积=长×宽)

师:同学们想知道这块地的面积又该怎样求呢?

(应变预设:学生可能说出用底乘邻边来求平行四边形,也可能说出底乘高,教师不予评价,待到总结时再释疑。)

师小结:这节课我们就带着这些问题一起来研究《平行四边形的面积》(板书课题)

87dcee13ccf1a9a291a3e2c3cf2953e6.png

96cacd5361a837e2b3ce11831a5bbc02.gif

教学意图

3d8edd348780b89c4ff709590a1daa2e.gif

本环节把教材情境变为数学小故事,让学生帮地主和他的两个儿子分地,比较长方形和平行四边形的面积大小,引发学生的认知冲突,既调动学生学习的积极性,又能直奔主题。

  切片分析  

从学生年龄阶段兴趣点出发,不妨把教材原来情境改成学生更为感兴趣的数学小故事。

由于本节课是在学生对平行四边形有了初步认识, 学习了长方形、正方形面积计算的基础上进行教学的。可以利用学生已知知识和生活经验来确定教学起点。

片段二:探问——自主探究,解决问题

1. 操作验证,探究新知。

师:通过刚才的观察和交流,大家都有自己的想法了,不过,这只是我们的猜想,光靠猜想是不够的,还需要我们进一步来验证。

师:老师为每个小组准备了一个材料袋,请各小组商量一下,你们准备采用什么材料,运用什么方法进行验证?以小组为单位,进行研究,操作之前,老师还有几点要求,请看大屏幕:

课件出示:

合作要求:(1)思考平行四边形的面积怎样计算(2)能不能将平行四边形转化为学过的图形来算?如何转化?

(3)组长做好分工,完成后选一- 名代表准备全班交流。

2.合作交流,自主建构

(1)用数方格的方法求平行四边形面积。

师:完成的同学请举手,现在请每个小组派一位同学来汇报。

预设生:我们小组是用数格子的方法数,把平行四边形纸片放在方格纸的下面,满格的一共有22个,我把不满一格的合为一个格。数了数平行四边形的面积是28平方厘米。

师:他们用的是数一数的方法。很好,这是一种既直观,又简便的方法。用方格纸来数平行四边形的面积,你觉得怎么样?(太麻烦了而且不能实现)看来用方格纸来数平行四边形的面积是有局限性。

(2) 用割补法求平行四边形面积。

师:还有不同方法算出平行四边形的面积的吗?

预设生:我们组用剪、拼的方法,把平行四边形沿着高剪成一个三角形和一个梯形再拼成长方形,然后量出长方形的长是7厘米,宽是4厘米,用长方形的面积公式算出面积是28平方厘米,所以平行四边形的面积28平方厘米。

教师强调:这种把平行四边形变成长方形的方法在数学上我们叫做转化法。

师:哪个组还有不同的方法吗?

预设生:把平行四边形沿着高剪成两个梯形再拼成长方形,然后量出长方形的长是7厘米,宽是4厘米,用长方形的面积公式算出面积是28平方厘米,所以平行四边形的面积28平方厘米。

师:真了不起,同学们能想出这么多方法,通过剪一剪、拼一拼的方法,把平行四边形转化成长方形,然后利用长方形的面积公式算出平行四边形的面积。现在请你们回想这几种不同的剪拼法,它们有什么共同点?

生:它们都是沿着平行四边形的高剪开,然后才拼成长方形的。

师:为什么要沿着平行四边形的高剪开呢?

应变预设:如果学生说不出来,出示剪开的平行四边形引导:剪开时,得到的都是什么角?(直角)我们学过的长方形的角有什么特征?(都是直角)从而引导学生说出:沿平行四边形的高剪,才能拼成学过的长方形。

师:对,那把平行四边形转化成长方形后,什么变了,什么没有变?

生:把平行四边形转化成长方形后,形状变了,面积没有变。

师:如果我们要求平行四边形的面积都把平行四边形转化长方形来算行吗?(行)

如果要求一块平行四边形地的面积,我们也用剪刀来剪,来拼吗?为什么?

(学生意识到用剪拼的方法把平行四边形转化成长方形也有局限性。)

师小结:看来呀,要求平行四边形的面积,我们必须研究出一种通用的方法(或一般的方法或公式都行)才行。

6145e1a4f9c661d691a66ac66977edc6.png

b7ae6fdb114dc3e9c5526f69ecc2cf7a.gif

教学意图

3d8edd348780b89c4ff709590a1daa2e.gif

五问.五动教学注重以生为本学生自主动手、动脑。所以探问环节先让学生小组合作探究,然后交流。用数一数、剪一剪、拼一拼的方法来探究平行四边形的面积。学生根据小组探究畅所欲言后,教师适时的用动画演示,把平行四边形转化成长方形的过程让学生直观的看出并回顾刚才的探究过程,渗透转化的思想方法,发展他们的空间观念,从而达到知识的建模过程。

切片分析

探问环节教学时教师要注重从学生已有的认知基础和生活经验出发,指导学生利用学具开展操作活动,在操作活动中完成对新知的建构过程。在学习多边形的面积时,可以通过量、折、剪、拼等操作活动。运用类推、转化等方法探索出图形面积的计算公式,体会知识间的内在联系。

本环节我们不妨首先引发探究,师可以先抛出问题:同学们想知道这块地的面积又该怎样求呢?借此来引发学生思考,然后再让学生想办法。应变预设:学生可能说出用底乘邻边来求平行四边形,也可能说出底乘高,教师不予评价,待到总结时再释疑。

其次多样验证:根据学生的猜想,学生自主探究,特别在转化思想上不能为了教而教,在剪拼的过程中不能一昧的强行引导孩子运用教材的方法转换成长方形,发挥学生思维能动性。

片段三:明问——交流质疑,明晰问题

师:刚才,我们通过剪——移——拼的方法把平行四边形转化成长方形,我把大家剪拼的方法整理了一下,请看转化过程,然后想一想,转化后的长方形和平行四边形有什么关系?

预设生1:我发现了转化后的长方形的面积等于平行四边形的面积。

生2:我发现了转化后的长方形的长等于平行四边形的底。

生3:我发现了转化后的长方形的宽等于平行四边形的高。

学生汇报,教师板书:

长方形的面积      =长×宽

平行四边形的面积=底×高

师:如果用字母S表示平行四边形的面积,用a表示底,h表示高,那么平行四边形的面积用字母怎样表示?(S=ah)

b7ae6fdb114dc3e9c5526f69ecc2cf7a.gif

教学意图

3d8edd348780b89c4ff709590a1daa2e.gif

明问环节教师通过带领学生进一步回顾平行四边形的面积推导过程,从而明确拼成的长方形与平行四边形的关系。这一环节教师要关注转化的思想方法的渗透,因为学生对转化思想理解比较抽象,平行四边形面积教学时老师一定要给予学生充分的思考时间与探究过程,引导学生注意两个转化:一是把平行四边形转化成长方形,理解平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽;二是公式的转化。

切片分析

明问环节设计了学生回顾平行四边形转化成长方形的过程,从而逐步引导学生观察、思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长×宽,所以平行四边形的面积=底×高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。数学教学的核心是促进学生思维的发展。教学中应注重通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维。

片段四:拓问——拓展应用,延伸问题

师:让我们回到故事的开头,现在你能帮老地主和他的两个儿子算一算,究竟哪块地面积大?

生:同样大,平行四边形地的底是12米高是8米,它的面积是底×高等于96平方米,长方形地的长12米宽8米,面积是长×宽=96平方米。

849198d0fbd456ad83203a46342b6007.png

2.一个平行四边形的停车位,底是2.5米, 高是5米。这个停车位的占地面积是多少平方米?

3.在方格纸.上画出两个形状不同的平行四边形,使它们的面积与图中的平行四边形的面积相等。

94c6cb926e4b7aec445a9658d05974cd.png

b7ae6fdb114dc3e9c5526f69ecc2cf7a.gif

教学意图

3d8edd348780b89c4ff709590a1daa2e.gif

本环节采取灵活多样的形式进行练习,激发学生学习的兴趣,首先学生运用新知识解决创问时的问题,既做到首尾呼应,又增强学生的成就感。后面练习题练习题的难度由浅入深,夯实本节课所学知识。

切片分析

首先考察学生能否准确掌握平行四边形的面积公式,培养学生对平行四边形面积的实际应用,习题设计应有层次感,使学生能深刻理解知识,巩固运用知识。习题可依据课堂进度自行调整。

片段五:思问—反思梳理,总结收获

师:通过这节课的学习,你有什么收获?

生自由说。

师:同学们,通过一节课的学习我们不但知道平行四边形的面积=底×高,更重要的是我们经历了探究和验证平行四边面积公式的过程,希望同学们在以后的学习中继续保持这种动手动脑的好习惯,勇于探索。

b7ae6fdb114dc3e9c5526f69ecc2cf7a.gif

教学意图

3d8edd348780b89c4ff709590a1daa2e.gif

思问先让学生回顾总结,在此过程中学生不仅梳理了知识上的收获,并且初歩体会到探究平行四边形的面积的数学方法:问题、猜想、验证、结论、应用。

切片分析

思问环节应注重整节课探究过程的梳理,帮助学生形成完整的认知结构,提炼数学思想方法。可设计为:

1.谈收获

师:通过这节课的学习,大家有什么收获?

生自由说。

2.理新知

师:同学们,通过一节课的学习我们不但知道平行四边形的面积=底×高,更重要的是我们经历了探究和验证平行四边面积公式的过程,希望同学们在以后的学习中继续保持这种动手动脑的好习惯,勇于探索。

c8157d0c293bcebc25bd0603aa00ab26.gif

意见建议

dd454d47918bedb2cf30e086edc5099f.png

1.创问环节可以设计学生更感兴趣的教学情境,灵活运用教材。

2.探问环节教材提供了不同的探究思路:猜测平行四边形的面积可以用邻边相乘得到,可以用数方格的方法来求,或者把平行四边形转化成长方形求出面积。接着教材呈现了把平行四边形转化成长方形的验证过程,通过长方形和平行四边形的关系推导出平行四边形的面积计算公式,这样设计的意图是让学生经历探索的过程。教学时可以先让学生说说两块土地的形状。由于已经有了探索长方形计算方法的经验,因此学生很容易想到用数方格的方法或转化成长方形的方法计算平行四边形的面积。这部分教学教师应注重引导学生经历“问题-猜测-验证-结论”的过程探索出平行四边形面积的计算方法。

3.明问环节要明确转化:平行四边形的底相当于长方形的什么?平行四边形的高相当于长方形的什么?平行四边形面积与长方形面积的关系?引导学生一 一对应完成公式的转化。在推导平行四边形的面积公式时要注意:第一不仅要让学生去猜测还要让学生说出猜测的依据。第二要给学生自主探索的机会让他们充分展示探索的过程和结果并用自己的语言进行表述。第三当出现割补的方法时教师应让学生先交流想法再指导操作活动,体会转化思想在几何学习中的作用。

1d67bbf5424efeeb246da0bbe39cb5cf.png

制作:毛振静

审核:王晓芳

7715c90925f7099a5396c0272a6e82bc.png

52f0f0dc945d7835d7418ad5eebf012e.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值