卡尔曼滤波对gps轨迹数据清洗_卡尔曼滤波:从入门到精通

本文介绍了卡尔曼滤波作为数据融合算法在GPS轨迹数据清洗中的作用,探讨了其在SLAM问题中的应用,通过一维小车追踪例子详细推导了卡尔曼滤波的预测和测量更新过程,解释了预测更新为何相当于“加法”,而测量更新为何采用乘法,并讨论了卡尔曼滤波的局限性和概率解释。
摘要由CSDN通过智能技术生成

最早接触卡尔曼滤波是在卫星导航课中,GPS 和IMU 结合时常会用到卡尔曼滤波。但学完了也只明白了数学推导,不过是“会做题的机器”。最近在学习SLAM 时想要重新好好温习一下卡尔曼滤波,虽然现在SLAM 的主流趋势是利用图优化,但卡尔曼滤波仍然为我们提供了一个很好的参考。

导论

卡尔曼滤波本质上是一个数据融合算法,将具有同样测量目的、来自不同传感器、(可能) 具有不同单位 (unit) 的数据融合在一起,得到一个更精确的目的测量值。

卡尔曼滤波的局限性在于其只能拟合线性高斯系统。但其最大的优点在于计算量小,能够利用前一时刻的状态(和可能的测量值)来得到当前时刻下的状态的最优估计。

本文虽然是小白教程,但还是需要各位至少知道高斯分布,一点点线性代数,还有状态向量这样的名词。

简述

考虑一个SLAM 问题,它由一个运动方程:

和一个观测方程组成:

就把它当作一个线性系统吧(非线性系统请看下一讲扩展卡尔曼滤波),并且为了简化推导,忽略路标的下标j,并把路标y 并入到状态向量一起优化,那么运动方程就可以写为:

其中,

  • 为t 时刻的状态向量,包括了相机位姿、路标坐标等信息,也可能有速度、朝向等信息;
  • 为运动测量值,如加速度,转向等等;
  • 为状态转换方程,将t-1 时刻的状态转换至t 时刻的状态;
  • 是控制输入矩阵,将运动测量值​
    的作用映射到状态向量上;
  • 是预测的高斯噪声,其均值为0,协方差矩阵为​

这一步在卡尔曼滤波中也称为预测 (predict)。

类似地,测量方程可以写为:

其中,

  • 为传感器的测量值;
  • 为转换矩阵,它将状态向量映射到测量值所在的空间中;
  • 为测量的高斯噪声,其均值为0,协方差矩阵为​

而卡尔曼滤波就是预测 - 测量之间不断循环迭代。当然,对于某些情况,如GPS + IMU,由于IMU 测量频率远比GPS 高,在只有IMU 测量值时,只执行运动更新,在有GPS 测量值时再进行测量更新。

一个小例子

用一个在解释卡尔曼滤波时最常用的一维例子:小车追踪。如下图所示:

9c5041fc72d0f5f046739b38f649e22b.png

状态向量为小车的位置和速度:

而司机要是踩了刹车或者油门,小车就会具有一个加速度,

​。

假设t 和t-1 时刻之间的时间差为​

。根据物理知识,有:
  • 0
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值