如何判断两物体加速度相等_物体下落和上升时的引力加速度是否相等?

郑重声明:本文的观点还没有得到严格的验证,故本文仅仅代表作者个人观点,未必与客观事实相符。作者认为,任何引力的大小都是相对的,与观测者的运动状态有关。

ecffe10882480ba93359b74bde05a654.png

传统看法

或许您也曾经思考过,物体以一定的速度下落或者上升时,在同一个高度上,物体受到引力加速度是否相等。

根据现有的理论,自由落体的引力加速度仅仅与高度有关,与其他因素无关。因此,在同一个高度上,无论物体如何运动,其所受的引力加速度是固定不变的。

19f4cbaac1a8f9d187157aaa94d37b85.png

蹦极中的下落和上升

如图,蹦极中的女孩,不管她是下落还是上升,在同一个高度上,引力加速度相等。这就是传统的看法。

我的看法

然而,作者却有不同的看法,认为物体在同一高度上,下落时受到的引力加速度大于上升的,即下落时的引力加速度要大

根据场子论的观点,物体对场子进行相互转化,从而产生引力。α场子和β场子相互转化时,场子和物体构成的整个系统的动量发生变化,从而产生引力。动量变化的原因是因为α场子的速度远远大于β场子的,在能量守恒的情况下,他们相互转化时,因为质量不变,但是速度发生了变化,导致整个系统的动量发生变化,故产生引力。物质在单位时间内对场子的转化量越大,产生的动量变化就越大,产生的引力也就越大。

根据场子论的观点,观测者受到的引力与其运动速度有关,不同的运动状态会导致受力不同。如果观察者的运动方向与场子传播的方向相反,那么观察者观测到场子浓度升高,单位时间内转化的场子就更多,故引力增大;相反,如果运动方向与场子传播方向相同,那么观测者观测到场子浓度降低,单位时间内转化的场子就更少,故引力减少

计算方法

任何东西,如果无法计算,那么就变得无法量化,无法验证,就变得没意义。下面将探讨如何进行计算。

假设引力场存在两种场子,即α场子和β场子,他们可以被物质进行相互转化。α场子的质量远远小于β场子的,α场子的速度远远大于β场子的,即N个α场子可以组合成一个β场子,一个β场子可以分解成N个α场子。

当β场子分解成α场子时,由于α场子的速度远远大于β场子的,故系统动量发生变化,引力产生。

45167c243c287a14710aef97f33d1ad0.png

蹦极女孩观测到的场子

蹦极女孩观测到场子如上图所示,β场子从下到上发射,α场子从上到下发射。其实,场子是向各个方向运动的,如β场子,既存在从下往上发射的,也存在从上往下发射的,但是从下到上的浓度较大,抵消了从上到下的,故认为只存在从下到上发射的β场子。同理可以认为只存在从上到下发射的α场子。

假设,静态的引力加速度为g,女孩速度为v,β场子速度为c1,α场子速度为c2。

当女孩下落时,女孩的速度方向与β场子的相反,女孩观测到的β场子浓度升高,单位时间内,转化β场子的数量增加,引力增加。当女孩下落时,女孩的速度方向与α场子的相同,女孩观测到的α场子浓度降低,单位时间内,转化α场子的数量减少,引力减少。当女孩下落时,加速度既有增加,又有减少,那么到底加速度是增加还是减少呢?

因为 c2>>c1,所以相对于c1来说,v对c2的影响可以忽略不计,故只需要考虑β场子的情况即可,即下落时,加速度是增加的。

假设加速度的增值为g2,则:

g2 = (v/c1)*g,

假设 v=10 m/s, c1=299792458 m/s(光速), g=9.8 m/s^2,则:

g2 = 3.2689*10^-7 m/s^2 = 32.689*10^-6 伽 = 32.689 微伽

以上计算是假设β场子的传播速度等于光速,观测者的下落速度为10米每秒,则观测者的引力加速度增加量大概是32微伽。当观测者以相同速度上升时,加速度的减少大概也是32微伽。

结论

经过计算,我们知道,物体下落和上升时所受的引力加速度是不同,但是,这个数值很小。在我们的宏观世界中,这点变化可以忽略不计。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值