因子分析累计方差贡献率要在多少_SPSS案例实践:因子分析

本篇博客通过SPSS进行因子分析,以洛杉矶12个地区的社会经济指标为例,探讨如何确定合适的公因子数量。通过对数据的kmo和巴特利特检验,发现数据适合进行因子分析。最终提取了两个因子,它们的累积方差贡献率为93.4%,简化了原本五个指标。因子F1主要反映发展和福利,因子F2代表规模和人口。通过公因子得分绘制四象限图,可对12个地区进行直观的评价和分类。
摘要由CSDN通过智能技术生成
a6cca91162f798294cdce0d5552e2b74.png用来做降维处理的统计方法,SPSS提供了比如因子分析、主成分分析、对变量聚类等。 01 案例数据洛杉矶12个地区的五项社会经济指标,人口pop、教育school、就业employ、服务业services及房价house,试 综合五项指标提取公因子对12个地区进行评价。 9dabeb11c3eb0f7b2392415a4652179f.png五项指分别反映了地区五个不同的发展方面,如果要给地区发展一个综合的评价,对五个指标进行降维处理是一个办法。 02 SPSS菜单对话框菜单:【分析】→【降维】→【因子】,打开因子分析主对话框。 2fd35614361779b8c22260dfb8b7dc40.png对 人口pop、教育school、就业employ、服务业services及房价house 五个指标进行降维处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值