三角函数π/2转化_数学一轮复习20,同角三角函数基本关系式与诱导公式

【考试要求】

1.理解同角三角函数的基本关系式:sin2α+cos2α=1,=tan α;

2.能利用定义推导出诱导公式.

【知识梳理】

1.同角三角函数的基本关系

(1)平方关系:sin2α+cos2α=1.

(2)商数关系:=tan α.

2.三角函数的诱导公式

34a52a2fda6db6620e999c97c1733994.png
087a8b81cf7a501a9a87c1c7c3f099b1.png

【微点提醒】

1.同角三角函数关系式的常用变形

(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.

2.诱导公式的记忆口诀

“奇变偶不变,符号看象限”,其中的奇、偶是指的奇数倍和偶数倍,变与不变指函数名称的变化.

3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.

a06f1b296d77a8b8af029ab5f46d107f.png
bcc4171a0ce19b3fb2c7056def7c9752.png

【考点聚焦】

考点一 同角三角函数基本关系式

角度1 公式的直接运用

b1398cb6030819b4fd4a5f425dca7904.png
ceb027b630b21448e2d4c075013fcdb5.png

【规律方法】 1.同角三角函数关系的用途:根据已知角的一个三角函数值求解另外的三角函数值,对三角函数式进行变换.(1)利用sin2α+cos2α=1可以实现角α的正弦、余弦的互化.(2)利用=tan α可以实现角α的弦切互化.

2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.

3.注意公式逆用及变形应用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.

9f57d0cc2eddf2e7ab6c325a176211d1.png
fc8f395a6729d08f076a3ed0f30dc4bc.png

考点二 诱导公式的应用

da6362aca2d5b483c4e4ade87f5cad71.png

【规律方法】 1.诱导公式的两个应用

(1)求值:负化正,大化小,化到锐角为终了.

(2)化简:统一角,统一名,同角名少为终了.

2.含2π整数倍的诱导公式的应用

由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α.

5837f57024ff292d16c740c02d670b17.png

考点三 同角三角函数基本关系式与诱导公式的综合应用

b83a610b49e03dd04499fd9bf78e3195.png
1c26f53eeadb226d4e7617424423693a.png

【规律方法】 1.利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.

2.(1)注意角的范围对三角函数值符号的影响,开方时先判断三角函数值的符号;

(2)熟记一些常见互补的角、互余的角,如-α与+α互余等

b45ca0d192f2a8024c67270c75844a82.png
db14671180c3590fcffb01f64ac99f0b.png

【反思与感悟】

1.同角三角函数基本关系可用于统一函数;诱导公式主要用于统一角,其主要作用是进行三角函数的求值、化简和证明.

2.三角函数求值、化简的常用方法:(1)弦切互化法:主要利用公式tan x=进行切化弦或弦化切,如,asin2x+bsin xcos x+ccos2x等类型可进行弦化切.

(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.

(3)巧用“1”的变换:1=sin2θ+cos2θ=cos2θ(1+tan2θ)=sin2θ(1+)=tan 等.

【易错防范】

1.利用诱导公式进行化简求值时,可利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.

特别注意函数名称和符号的确定.

2.注意求值与化简后的结果一般要尽可能有理化、整式化.

78447ac59f46046cbac4032dcddf1f6c.png
33bb942fb42d3fadb01405927d355612.png
83839b0285f853228d34da9495f9080d.png
8900d5fe9672d1745ad3936f0e0ab672.png
5e8a70a8075925c3e6c25d31a0ae2894.png
76e76b519cf39eb92edfece074d9a633.png
67b2b9d5a12641c85384dca04fa8b429.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值