三角函数π/2转化_【数学知识点】完整版三角函数诱导公式

本文详细解读了诱导公式中的'奇变偶不变,符号看象限'口诀,介绍了三角函数在不同角度和象限中的变换规律,以及如何通过公式一到六计算三角函数值。涵盖了基本概念、具体应用和四个象限的符号判断方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

奇变偶不变,符号看象限,这句口诀意思是:在诱导公式中,如果你差的角度是90度也就是二分之派的整数倍,可以用此公式。

解释:奇变偶不变,符号看象限

对于kπ/2±α(k∈Z)的三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)

各种三角函数在四个象限的符号如何判断,也可以记住口诀:

 “一全正;二正弦(余割);三两切;四余弦(正割)”。

eb1b257a15efcb3c6b4c0cfa82f4a27f.png

第一象限内任何一个角的三角函数值都是“+”;

第二象限内只有正弦、余割是“+”,其余全部是“-”;

第三象限内只有正切、余切函数是“+”,弦函数是“-”;

第四象限内只有余弦、正割是“+”,其余全部是“-”。

诱导公式

公式一:设α为任意角,终边相同的角的同一三角函数的值相等

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:任意角α与-α的三角函数值之间的关系

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:π/2±α与α的三角函数值之间的关系

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

e72895e28e6437cbd863e634e99ead51.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值