变换上三角矩阵_线性代数Review:线性变换的Jordan形

这是我两年前自学的东西,我认为线性变换的Jordan形是复数域上的线性代数最优美的理论,同时也是最复杂的一个证明。正好下学期A0: Linear Algebra会遇见它,于是我把证明整理一下。这个专题在这篇文章写过,注意符号系统有差异:

Tautochrone:V. 谱理论 Part 2​zhuanlan.zhihu.com
ee786573e3ae5243199f8b31e0af5898.png

为什么是复数域?因为代数基本定理(Fundamental Theorem of Algebra)

上的非常数多项式都有根。

它的一个直接推论是:若线性变换

,则它的
特征多项式可以写成:

其中

是互异的复特征值,
是它们对应的代数重数,且有
.
如果我们想讨论一般域k上的线性变换,我们只需要加上一个条件:特征多项式在域k上分裂。后面的讨论也适用

我们知道,在可对角化的情况下,对每个

,特征空间
都有一组由特征向量构成的基
,使得
。在一般情况下,我们可能找不到足够的特征向量(i.e. 几何重数<代数重数),于是我们用广义特征向量来凑:
Definition 1.
满足
,则
的对应
的一个
广义特征向量. Definition 2.
称为
的对应
广义特征空间.

Lemma 1.

的不变子空间.
Proof.
,由定义有
,于是

.
的不变子空间.
QED.


,则
,即
是一个
幂零变换,我们先研究幂零变换的标准形,证明
可以被分解成
的循环不变子空间的直和。

Lemma 2.

是幂零变换,取
,令
是使得
成立的最小正整数,则
线性无关.
Proof. 假设线性相关,设
是使得
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值