深度学习实战_五天入门深度学习,这里有一份PyTorch实战课程

17fcaff585d0eaf0ca27bb58a61ff479.png
这是一门五天入门深度学习的实战课程。

想入门深度学习的小伙伴有福了!dataflowr 最近推出了一门五天初步掌握深度学习的实战教程(实战使用 PyTorch 框架),有知识点有实例有代码,值得一看。该课程的创建和维护者是法国国立计算机及自动化研究院(INRIA)的研究员 Marc Lelarge。

  • 课程地址:https://mlelarge.github.io/dataflowr-web/cea_edf_inria.html
  • 代码地址:https://github.com/mlelarge/dataflowr

该课程的教学目标是学习者能够了解:

  • 何时何地应该使用深度学习
  • 深度学习的工作原理
  • 深度学习前沿研究

此外,该课程还希望学习者能够自己动手做深度学习项目。

这门实战课程要求学习者积极参与,亲自动手实践,其使用的深度学习框架为 PyTorch。

课程目录

第一天:

  • (PPT)课程简介;
  • (代码)示例 1:在 Colab 上创建 模型参加 Kaggle 猫狗识别竞赛;
  • (代码)用 Autograd 做回归:PyTorch 简介。

第二天:

  • (PPT)线性/logistic 回归、分类和 Pytorch 模块;
  • (代码)理解卷积,创建首个数字识别神经网络;
  • (PPT)嵌入和数据加载器(DataLoader);
  • (代码)协作过滤算法:矩阵因子分解和推荐系统;
  • (PPT)变分自编码器;
  • (代码)自编码器和。

第三天:

  • (PPT)用于真实世界场景的深度学习;
  • (代码)Softmax 温度、混合密度网络、通过反向传播的贝叶斯;
  • (PPT)生成对抗网络;
  • (代码)条件 GAN 和 。

第四天:

  • 循环神经网络:PPT 及相关代码;
  • (代码)char-RNN 的 PyTorch 教程;
  • (代码)Word2vec;
  • (代码)试玩词嵌入;
  • 了解结构化自注意句子嵌入的论文和代码,从而掌握 Glove NLP 小项目。

第五天:

  • (PPT)打开 AI 黑箱;
  • (代码)类激活图(CAM);
  • (代码)对抗样本;
  • 图神经网络。

9ad7aa5ed865dc8c2c4111661c2c2a74.png

希望对读者有所帮助。

推荐阅读

汇总 | 3D机器学习资源汇总

近5年论文汇总 | 基于RGB-D的3D目标检测

史上最全 | 图神经网络必读论文和最新进展列表

深度学习全网最全学习资料汇总之入门篇

2019 CVPR | 文本检测综述

激光SLAM与视觉SLAM的现状与趋势

【资源推荐】Machine Learning基础学习资源汇总

书单 | 想成为一名合格的NLPer,应该读哪些书?

从相机标定到SLAM,极简三维视觉六小时课程视频(附PPT)

关于GANs在医学图像领域应用的总结

多目标跟踪算法(论文+源码)

2019年视觉里程计VIO新进展

真正的神经网络,敢于不学习权重

CVPR 2019 | 工业界与学术界的深度融合专题

重磅 | 完备的 AI 学习路线,最详细的资源整理!

视频目标识别资源集合

CVPR 2019 | 逼真人脸3D驱动

李航《统计学习方法》读书笔记

机器学习资源汇总(课程、教材、教程、笔记、速查等)

最强 SLAM Datasets 合辑

最全Python学习资源:从入门、进阶到大神

深度学习的未来——神经架构搜索

吐血整理!这可能是最全的机器学习工具手册

出现这十种症状,说明你编程前景黯淡

2019年AI芯片产业深度研究报告

2019年最佳计算机视觉课程推荐

数千人顶会的干货,ICML、CVPR2019演讲视频资源在此

本文发表在自己的公众号:AI资源汇。欢迎关注~

4a498085ddd8d6366459ad8e6d802180.png

原文:

https://mp.weixin.qq.com/s?__biz=MzIzOTczODQ0Ng==&mid=2247483921&idx=1&sn=1be0ddd528ce819bb5a43ba60afa9f33&chksm=e924c930de534026f73a8da19a84954974c1a0e91313cacb9ab0628b25fcd197fcbd3a3e0d0c&mpshare=1&scene=1&srcid=&pass_ticket=Nu5FYABPAT7nnTmBGhfvXMzuHxIW63Bf0Byn7vZT7p3nVLOC321e5A4mTwl67QN3#rd​mp.weixin.qq.com
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值