【Pandas】pandas Series filter

Pandas2.2 Series

Computations descriptive stats

方法 描述
Series.align(other[, join, axis, level, …]) 用于将两个 Series 对齐,使其具有相同的索引
Series.case_when(caselist) 用于根据条件列表对 Series 中的元素进行条件判断并返回相应的值
Series.drop([labels, axis, index, columns, …]) 用于从 Series 中删除指定的行或列(对于 Series 来说,通常是删除行)
Series.droplevel(level[, axis]) 用于从多层索引(MultiIndex)的 Series 中删除指定的索引层级
Series.drop_duplicates(*[, keep, inplace, …]) 用于从 Series 中删除重复的值
Series.duplicated([keep]) 用于检测 Series 中的重复值
Series.equals(other) 用于比较两个 Series 对象是否完全相等的方法
Series.first(offset) 用于根据日期偏移量(offset)选择 Series 中时间序列数据的初始部分
Series.head([n]) 用于返回 Series 的前 n 个元素
Series.idxmax([axis, skipna]) 用于返回 Series 中最大值的索引
Series.idxmin([axis, skipna]) 用于返回 Series 中最小值的索引
Series.isin(values) 用于检查 Series 中的每个元素是否存在于给定的值集合 values
Series.last(offset) 用于根据日期偏移量(offset)选择 Series 中时间序列数据的末尾部分
Series.reindex([index, axis, method, copy, …]) 用于重新索引 Series 对象的方法
Series.reindex_like(other[, method, copy, …]) 用于将 Series 对象重新索引以匹配另一个 SeriesDataFrame 的索引的方法
Series.rename([index, axis, copy, inplace, …]) 用于重命名 Series 对象的索引或轴标签的方法
Series.rename_axis([mapper, index, axis, …]) 用于为 Series 的索引轴(index)或列轴(columns,对于 Series 通常不适用)设置名称
Series.reset_index
### Pandas Series 的详细介绍 #### 创建 Series 对象 Series 是一种类似于一维数组的对象,它能够保存任何类型的数据。创建一个简单的 Series 可以通过传递列表给 `pd.Series()` 方法。 ```python import pandas as pd s = pd.Series([1, 3, 5, np.nan, 6, 8]) print(s) ``` 这段代码会输出带有默认整数索引的 Series[^1]。 #### 基于现有数据构建 Series 除了直接传入数值外,还可以基于字典、常量或其它可迭代对象来建立 Series 实例: ```python # 字典型数据输入 dict_data = {'a': 1., 'b': 2., 'c': 3.} series_from_dict = pd.Series(dict_data) # 数值型数据填充 scalar_series = pd.Series(5, index=[0, 1, 2]) # 时间戳作为索引 dates = pd.date_range('20230101', periods=6) time_indexed_series = pd.Series(np.random.randn(len(dates)), index=dates) ``` 上述例子展示了不同方式初始化 Series 的灵活性[^3]. #### 访问和操作 Series 数据 可以像访问 Python 列表那样使用位置索引来获取单个元素;也可以利用标签名来进行更直观的操作: ```python # 获取第一个元素 first_element = s[0] # 使用标签选取特定项 (假设已定义了带标签的 series) value_by_label = series_with_labels['label_name'] ``` 对于批量读取或多条件筛选,则有更多高级功能可供调用: ```python # 条件查询 filtered_s = s[s > 0] # 多重逻辑运算符组合 complex_filter = s[(s > 0) & (s < 5)] ``` #### 修改 Series 中的内容 更新已有条目或是追加新成员都很容易实现: ```python # 更新指定位置处的值 s.loc[index_position] = new_value # 添加新的键-值对到末尾 if key not in s: s[key] = value_to_add ``` 值得注意的是,在执行这些变更动作之前应当确认目标 Series 是否允许就地修改(in-place),因为某些情况下可能需要返回一个新的副本而不是改变原始结构. #### 描述统计与基本属性查看 为了快速了解整个序列的状态,提供了诸如 `.describe()`,`.mean()`,`std()` 等便捷方法用于计算统计数据特征;而要获得有关尺寸大小的信息则可通过 `.size` 或者 `.shape` 属性完成. ```python summary_statistics = s.describe() average_of_elements = s.mean() standard_deviation = s.std() number_of_items = s.size dimension_info = s.shape ``` 以上就是关于 Pandas 库内 Series 类型的一些基础概念及其常见应用场景说明.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuweidong0802

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值