【Pandas】pandas DataFrame sub

Pandas2.2 DataFrame

Binary operator functions

方法描述
DataFrame.add(other)用于执行 DataFrame 与另一个对象(如 DataFrame、Series 或标量)的逐元素加法操作
DataFrame.add(other[, axis, level, fill_value])用于执行 DataFrame 与另一个对象(如 DataFrame、Series 或标量)的逐元素加法操作
DataFrame.sub(other[, axis, level, fill_value])用于执行逐元素的减法操作

pandas.DataFrame.sub()

pandas.DataFrame.sub() 方法用于执行逐元素的减法操作。这个方法可以用于两个 DataFrame 之间的减法,也可以用于 DataFrame 和一个标量之间的减法。下面是对参数的详细描述:

  • other: 可以是另一个 DataFrame、Series、Index、常量或可广播到相同形状的数组。
  • axis: 指定沿哪个轴进行操作。0'index' 表示沿行操作,1'columns' 表示沿列操作。
  • level: 如果索引是多重索引(MultiIndex),则可以指定沿哪个级别进行操作。
  • fill_value: 如果遇到缺失值(NaN),可以使用这个值来填充。
#示例

假设我们有两个 DataFrame:

import pandas as pd

df1 = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [4, 5, 6]
})

df2 = pd.DataFrame({
    'A': [1, 1, 1],
    'B': [2, 2, 2]
})
示例 1: DataFrame 与 DataFrame 之间的减法
result = df1.sub(df2)
print(result)

输出:

   A  B
0  0  2
1  1  3
2  2  4
示例 2: DataFrame 与标量之间的减法
result = df1.sub(1)
print(result)

输出:

   A  B
0  0  3
1  1  4
2  2  5
示例 3: 使用 fill_value 处理缺失值

假设 df2 有一个缺失值:

df2.iloc[0, 0] = None  # 设置 df2 中的一个值为 NaN
result = df1.sub(df2, fill_value=0)
print(result)

输出:

     A  B
0  1.0  2
1  1.0  3
2  2.0  4

在这个例子中,df2 中的第一个元素是 NaN,使用 fill_value=0 后,df1 中的对应元素 1 减去 0,结果仍然是 1

这些示例展示了 pandas.DataFrame.sub() 方法的基本用法和一些常见的情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuweidong0802

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值