【Pandas】pandas DataFrame agg

Pandas2.2 DataFrame

Function application, GroupBy & window

方法描述
DataFrame.apply(func[, axis, raw, …])用于沿 DataFrame 的轴(行或列)应用一个函数
DataFrame.map(func[, na_action])用于对 DataFrame 的每个元素应用一个函数
DataFrame.applymap(func[, na_action])用于对 DataFrame 中的每一个元素应用一个函数
DataFrame.pipe(func, *args, **kwargs)用于实现链式编程风格的方法
DataFrame.agg([func, axis])用于对 DataFrame 的数据进行聚合操作

pandas.DataFrame.agg()

pandas.DataFrame.agg()(或 DataFrame.aggregate())方法用于对 DataFrame 的数据进行聚合操作。它可以沿指定轴(行或列)应用一个或多个聚合函数,常用于统计汇总分析。


方法签名
DataFrame.agg(func=None, axis=0)

参数说明
参数类型描述
funcfunction、str、list 或 dict要应用的聚合函数。可以是一个函数名字符串(如 'sum')、函数对象(如 np.sum)、函数列表,或者为每列指定不同函数的字典。
axis{0 or ‘index’, 1 or ‘columns’}, default: 0沿哪个轴进行聚合:0 表示按列聚合(默认),1 表示按行聚合。

返回值
  • 如果 func 是单个聚合函数,则返回一个 Series
  • 如果 func 是多个聚合函数或多个列分别聚合,则返回一个 DataFrame

示例
示例1:使用单个聚合函数(如 'mean'
import pandas as pd

df = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [4, 5, 6]
})

result = df.agg('mean')
print(result)

输出:

A    2.0
B    5.0
dtype: float64

示例2:使用多个聚合函数(如 ['min', 'max']
result = df.agg(['min', 'max'])
print(result)

输出:

   A  B
min  1  4
max  3  6

示例3:对不同列使用不同的聚合函数
result = df.agg({
    'A': 'mean',
    'B': ['min', 'max']
})
print(result)

输出:

          A    B
mean     2.0  NaN
min      NaN  4.0
max      NaN  6.0

示例4:按行聚合(axis=1)
result = df.agg('sum', axis=1)
print(result)

输出:

0    5
1    7
2    9
dtype: int64

总结
  • agg() 支持多种聚合方式,灵活适用于各类统计汇总需求。
  • 可以为不同列指定不同的聚合函数。
  • 常用于数据分析中的分组统计(与 groupby() 配合使用时更加强大)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuweidong0802

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值