Pandas2.2 DataFrame
Function application, GroupBy & window
方法 | 描述 |
---|---|
DataFrame.apply(func[, axis, raw, …]) | 用于沿 DataFrame 的轴(行或列)应用一个函数 |
DataFrame.map(func[, na_action]) | 用于对 DataFrame 的每个元素应用一个函数 |
DataFrame.applymap(func[, na_action]) | 用于对 DataFrame 中的每一个元素应用一个函数 |
DataFrame.pipe(func, *args, **kwargs) | 用于实现链式编程风格的方法 |
DataFrame.agg([func, axis]) | 用于对 DataFrame 的数据进行聚合操作 |
pandas.DataFrame.agg()
pandas.DataFrame.agg()
(或 DataFrame.aggregate()
)方法用于对 DataFrame 的数据进行聚合操作。它可以沿指定轴(行或列)应用一个或多个聚合函数,常用于统计汇总分析。
方法签名
DataFrame.agg(func=None, axis=0)
参数说明
参数 | 类型 | 描述 |
---|---|---|
func | function、str、list 或 dict | 要应用的聚合函数。可以是一个函数名字符串(如 'sum' )、函数对象(如 np.sum )、函数列表,或者为每列指定不同函数的字典。 |
axis | {0 or ‘index’, 1 or ‘columns’}, default: 0 | 沿哪个轴进行聚合:0 表示按列聚合(默认),1 表示按行聚合。 |
返回值
- 如果
func
是单个聚合函数,则返回一个Series
。 - 如果
func
是多个聚合函数或多个列分别聚合,则返回一个DataFrame
。
示例
示例1:使用单个聚合函数(如 'mean'
)
import pandas as pd
df = pd.DataFrame({
'A': [1, 2, 3],
'B': [4, 5, 6]
})
result = df.agg('mean')
print(result)
输出:
A 2.0
B 5.0
dtype: float64
示例2:使用多个聚合函数(如 ['min', 'max']
)
result = df.agg(['min', 'max'])
print(result)
输出:
A B
min 1 4
max 3 6
示例3:对不同列使用不同的聚合函数
result = df.agg({
'A': 'mean',
'B': ['min', 'max']
})
print(result)
输出:
A B
mean 2.0 NaN
min NaN 4.0
max NaN 6.0
示例4:按行聚合(axis=1)
result = df.agg('sum', axis=1)
print(result)
输出:
0 5
1 7
2 9
dtype: int64
总结
agg()
支持多种聚合方式,灵活适用于各类统计汇总需求。- 可以为不同列指定不同的聚合函数。
- 常用于数据分析中的分组统计(与
groupby()
配合使用时更加强大)。