本博客中的相关博文:
林轩田老师机器学习基石16篇笔记,机器学习技法16篇笔记,阿里云大学机器学习笔记6篇。
机器学习基石
更新时间 | 笔记内容 | 课程作业 |
---|---|---|
2020.03.06 | 机器学习基石01:机器学习简介 | |
2020.03.08 | 机器学习基石02:感知器算法(Perceptron Algorithm) | |
2020.03.09 | 机器学习基石03:机器学习的类型(Types of ML) | |
2020.03.09 | 机器学习基石04:机器学习的可行性(Feasibility of ML) | 作业1:PLA算法和Pocket算法实现 |
2020.03.10 | 机器学习基石05:训练与测试(Training versus Testing) | |
2020.03.11 | 机器学习基石06:泛化理论(Theory of Generalization) | |
2020.03.12 | 机器学习基石07:VC维(The VC Dimension) | |
2020.03.18 | 机器学习基石08:噪声和误差(Noise and Error) | 作业2:Growth Function、VC Dimention、Decision Stump |
2020.04.15 | 机器学习基石09:线性回归(Linear Regression) | |
2020.04.16 | 机器学习基石10:逻辑回归(Logistic Regression) | |
2020.04.16 | 机器学习基石11:线性模型分类(Linear Models for Classification) | |
2020.04.17 | 机器学习基石12:非线性变换(Nonlinear Transformation) | 作业03:二阶泰勒展开,特征转换,逻辑回归 |
2020.04.18 | 机器学习基石13:过拟合风险(Hazard of Overfitting) | |
2020.04.18 | 机器学习基石14:正则化(Regularization) | |
2020.04.19 | 机器学习基石15:交叉验证(Cross Validation) | |
2020.04.19 | 机器学习基石16:三个重要原则(Three Learning Principles) | 作业04:交叉验证,正则化线性回归 |
机器学习技法
更新日期 | 课程内容 | 课程作业 |
---|---|---|
2020.04.28 | 机器学习技法01:线性支持向量机(Linear Support Vector Machine) | |
2020.04.29 | 机器学习技法02:对偶支持向量机(Dual Support Vector Machine) | |
2020.04.30 | 机器学习技法03:Kernel支持向量机(Kernel Support Vector Machine) | |
2020.05.03 | 机器学习技法04:软边界支持向量机(Soft-Margin Support Vector Machine) | 作业5 |
2020.05.06 | 机器学习技法05:Kernel 逻辑回归(Kernel Logistic Regression) | |
2020.05.06 | 机器学习技法06:支持向量回归(Support Vector Regression) | |
2020.05.07 | 机器学习技法07:Blending and Bagging | |
2020.05.08 | 机器学习技法08:AdaBoost(Adaptive Boosting) | 作业6 |
2020.05.24 | 机器学习技法09:决策树(Decision Tree) | |
2020.05.24 | 机器学习技法10:随机森林(Random Forest) | |
2020.05.25 | 机器学习技法11:梯度增强决策树(Gradient Boosted Decision Tree) | |
2020.05.25 | 机器学习技法12:神经网络(Neural Network) | 作业7 |
2020.05.26 | 机器学习技法13:深度学习(Deep Learning) | |
2020.05.26 | 机器学习技法14:径向基函数网络(Radial Basis Function Network) | |
2020.05.27 | 机器学习技法15:矩阵分解(Matrix Factorization) | |
2020.05.27 | 机器学习技法16:机器学习算法总结 | 作业8 |
阿里云大学机器学习
更新时间 | 笔记内容 |
---|---|
2020.03.23 | 机器学习算法详解 01 – 机器学习简介 |
2020.03.23 | 机器学习算法详解 02 – 线性回归 |
2020.03.23 | 机器学习算法详解 03 – 回归模型诊断与优化 |
2020.03.24 | 机器学习算法详解 04 – 逻辑回归 |
2020.03.24 | 机器学习算法详解 05 – 支持向量机 |
2020.03.25 | 机器学习算法详解 06 – 贝叶斯方法 |
林轩田老师在油管视频评论区留言推荐在Coursera观看机器学习技法课程。
Coursera课程链接:点击此处