群同态基本定理证明_群论(2): 群作用, Sylow定理

本文详细探讨了群在集合上的作用,包括双射变换群、群的置换表示、轨道、稳定子群等概念。接着,介绍了Sylow定理,阐述了Sylow子群的存在性、唯一性和共轭性质,为深入理解有限群的结构提供了基础。
摘要由CSDN通过智能技术生成

010b84be804f2d61f25cbc9894424fca.png

内容提要:

1 群在集合上的作用; 2 Sylow定理; 本文主要参考文献.

本文的前置内容为:

格罗卜:群论(1): 群, 同构定理, 循环群

更多内容,请移步专栏目录:

格罗卜:格罗卜的数学乐园-目录​zhuanlan.zhihu.com
f3ead4cc34b95b84c286f72edd676d7d.png

1 群在集合上的作用

1-1. [双射变换群]

是集合,
上的全体双射变换的集合
是一个群.

1-2.[群作用]

是集合,
是群, 对任意的
, 有唯一元素
, 对所有的
, 满足:
  • (1)
    ;
  • (2)
    .

则称

作用. 或者
是左
-集.

1-3. [群的置换表示]

是集合,
是群, 同态
上的
置换表示. 若
则称
是忠实的.
  • 上的
    置换表示. 那么
    的正规子群,
    的子群.
  • 能被
    作用的集合
    的置换表示的集合 之间存在
    对应.

1-4. [轨道]

.
  • 易知
    存在
    使得
    是一个等价关系.
  • 所在的等价类为
    .
  • 可分拆分为轨道的无交并.
  • 如果
    有限,那么轨道数目有限,并且
    .

1-5. [稳定子群]

.
  • 的子群.
[证明] 需要证明
, 由
,两边由
作用即可.
  • .
  • 如果
    , 那么
    .
[证明]
.

1-6. [轨道-稳定子定理]

-集,
, 则
.
[证明]
,
. 良定性和双射性都显然.
  • 特别地, 当
    是有限群时,
    .

1-7. [不动点] 轨道长为1的点.

1-8. [群在自身上的左平移]

是群, 定义
上的左平移
,
. 这是一个群作用.
  • 由左平移给出的
    称为
    左正则表示.
  • :
    .
  • 轨道: 传递.
  • 不动点: 不存在.
  • 推论: Caylay定理- 任意群都同构与某一集合上的变换群. (注: 变换群:
    的子群).

1-9. [群在自身上的右平移]

是群, 定义
上的右平移
,
. 这是一个群作用.
  • 由右平移给出的
    称为
    右正则表示.
  • :
    .
  • 轨道: 传递.
  • 不动点: 不存在.

1-10. [群在自身上的共轭]

是群, 定义
上的作用
,
. 这是一个群作用.
  • 由共轭给出的
    称为
    共轭表示.
  • :
    称为群
    中心.
  • 轨道:
    所在的轨道称为
    所在的
    共轭类
    .
  • 稳定子群:
    , 称为
    中的
    中心化子, 这个一个子群.
  • 不动点:
    .
  • 类方程: 如果群
    有限. 由
    , 可以得到:
    (这里
    是所有的共轭类).

1-11.

群有非平凡的中心.
[证明] 这由下一条直接得出.

1-12.

在有限集合
上作用, 那么
.
[证明]
, 这里
是长不为
的轨道并且
整除
.

1-13. [群在左商集上的左平移]

是群,
是子群. 定义
上的作用
,
. 这是一个群作用.
  • 由左平移给出的
    称为
    左诱导表示.
  • :
    的正规子群.
[证明]
当且仅当对于任意
都有
, 当且仅当对于任意
都有
, 当且仅当对于任意
都有
, 当且仅当对于任意
都有
, 当且仅当
.
  • 不动点:
    .
  • 如果
    有限, 除非
    否则不动点集合是空集.

2 Sylow定理

2-1. [Sylow子群] 假如

, 则我们把它的
阶子群成为
Sylow-
子群.
  • 根据2-2, Sylow子群一定存在.

2-2. [Sylow第一/三定理]

是有限群,
的因子, 记
表示
阶子群的个数, 那么
  • (1)
    .
  • (2) 特别地,
    中有
    阶子群.
  • (3) 假如
    , 则
    .
[证明]
, 这里
不一定互素. 设
表示
元子集的全体的集合, 那么
.

考虑
,
. 这是一个群作用, 相应的置换表示为
. 所以有轨道分解:
.

取元素
,
,
,
, 注意
都是
元子集. 于是有相应的
,
,
,
, 这里意
的稳定子群.

于是有
.
Step 1. 断言:
群, 即它的阶为
的方次, 并且方次数不大于
.

这是因为由稳定子的定义,
, 故
为若干个
的左陪集之并, 因此
整除
.
Step 2. 在Step 1中我们说明了
群, 它的阶不大于
. 我们分恰好等于
和严格小于
两种情形来讨论.
, 则
.
, 则
.

于是由
.
Step 3. 讨论长为
的轨道.

不妨设
, 则
, 而我们知道
. 由于
为若干个
的左陪集之并, 因此对于任意的
. 即
的一个左陪集.
现在
(这里
阶子群)
.
结论: 每个长为
的轨道皆为某个
阶子群的全体右陪集的集合. Step 4. 讨论
阶子群.

对于
的每一个
阶子群
. 其全体右陪集之集合
显然为
上长为
的轨道.
Step 5. Step 3 与Step 4 给出了长为
的轨道和
阶子群的一一对应.
Step 6. 由Step 2 与Step 5可知
.
Step 7. 把此式运用到
阶循环群上, 有
.

因此
,

因此
.

这就证明了(1), (2). 现在来证明(3). 考虑
在所有Sylow
-子群集合
上的共轭作用, 由
Sylow第二定理, 只有一条轨道, 根据轨道-稳定子定理, 即有
整除
.

2-3. [Sylow第二定理]

是有限群,
, 则
  • (1)
    的任何一个
    -子群包含在一个Sylow
    -子群内,
  • (2)
    的所有Sylow-
    子群相互共轭.
  • (3)
    的Sylow-
    子群正规当且仅当它只有一个.
[证明]
阶子群,
是一个Sylow
-子群,

考虑表示
,
,
. 这是一个群作用.
在有限集合
上作用, 那么
. 这里
是不动点集.

所以一定存在不动点
.

即对于
, 即
,
. 注意
也是群, 从而是Sylow
-子群, 这就证明了(1).

也是Sylow-
子群, 又因为
, 得到
, 说明Sylow-
子群相互共轭.

本文主要参考文献: Joseph J.Rotman : 高等近世代数, Advanced Modern Algebra, 出版社:机械工业出版社, ISBN:9787111191605

高等近世代数 (豆瓣)​book.douban.com
efc2ab82e36a7d3c9baa84aeff76c495.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值