PBS: Extract More Information from Datasets to Improve the Performance of Face Detection

论文原名为《Precise Box Score: Extract More Information from Datasets to Improve the Performance of Face Detection》由于字符限制,标题对Precise Box Score做了简写操作,文章主要有两个创新点,分别说明如下:

一、如果朋友们研究过物体检测技术,应该对Faster R-CNN之类的two-stage方案以及SSD类的one stage方案并不陌生,相信网上的对文章甚至是代码的解读可以很容易找到,这里只说与本文优化策略相关的部分,这些方案在进行模型训练的时候,通常认定IOU大于0.7的为正样本,打标签为1,小于0.3的为负样本,打标签为0,而对于IOU在0.3和0.7之间的没有进行处理,相当于与并没有充分的对训练数据集的内容进行有效利用,因此作者提出了recise Box Score,简单点说就是定义IOU与标签之间的映射关系函数,使其输出 标签为浮点型,而非我们熟悉的二值整型数据,文中给出了三种 映射方案,如下:




整体来看三个公式中参数的设置没有给出什么具体的规律而言,可以说都是在具体数据集上通过类似于遍历的方法进行多次测试选出最优设置参数,只是对公式中两个带best下标的参数选择的遍历范围做出了限制,如best-neg为0.3的时候,best-pos可以为0.3,0.4,0.5,0.7,best-neg为0.1的时候,best-post为0.2

接下来既然类别标签为连续的了,既不能继续使用交叉熵作为loss函数,需要变更为sigmoid with eucliden loss函数,回归部分还是使用我们常用的smooth L1 loss,两者之间的权值也是以实验结果为导向的

个人感觉如果想要利用此创新点去提升物体检测性能,需要做大量的实验,可能更加适合有刷榜任务的朋友们,对于实际业务场景应用而言,由于通常我们难以保证训练数据与实际业务场景数据的分布和特性是一致的,可能不大适合使用此技术进行性能提升,当然,这只是我的个人看法,欢迎大家吐槽

二、SEMCM(Simple but Effective Model Compression Method)提出了一种模型压缩的方案,个人感觉这种说法很容易让人产生误解,其实际上做的是如何利用一个训练好的复杂物体检测模型去监督简单物体检测模型训练的方案,如下图所示:


核心部分与loss函数设计,其包括四部分,其中是简单物体检测模型训练要用到的分类loss与回归loss,另外两个可以理解成为peception loss(沿用深度学习超分辨率优化算法中的称谓),直观理解就是让简单模型与复杂模型中分类与回归部分所用Feature Map的值是相似的,个人感觉创新点2相较于1对工业界的朋友们更加有用一些。

文章的最后,想说明下本博客中所有文章均只会对文章的核心思想进行说明,方便朋友们能很快抓住要点,至于实现细节、公式中的参数说明之类的都不会进行介绍,毕竟做学术研究还是要严谨些的,文章还是要自己去看,去理解,去消化成为自己的知识,别人是无法代劳的,就像我一直认为知识付费是个骗局一样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值