无偏估计
f ( X 1 , X 2 , … … ) 是 g ( θ ) 的 无 偏 估 计 E ( f ( X 1 , X 2 , … … ) ) = g ( θ ) f(X_1,X_2,……)是g(θ)的无偏估计\\ E(f(X_1,X_2,……))=g(θ) f(X1,X2,……)是g(θ)的无偏估计E(f(X1,X2,……))=g(θ)
样本均值方差的无偏估计
{ x ˉ = ∑ 1 n x i n 均 值 , E ( x ˉ ) = μ S 2 = ∑ 1 n ( x ˉ − x i ) 2 n − 1 方 差 , E ( S 2 ) = σ 2 \begin{cases} \bar{x}=\frac{ \sum_{1}^{n} x_{i} }{n}& {均值,E( \bar{x} )=μ}\\ S^2= \frac{ \sum_{1}^{n} ( \bar{x}- x_{i} )^2 }{n-1} & {方差,E( S^2 )=σ ^2} \end{cases} {xˉ=n∑1nxiS2=n−1∑1n(xˉ−xi)2均值,E(xˉ)=μ方差,E(S2)=σ2
求样本方差为什么除n-1 ?
除
n
−
1
使
样
本
方
差
作
为
总
体
方
差
σ
2
的
无
偏
话
计
量
n
−
1
与
自
由
度
h
t
t
p
s
:
/
/
b
a
i
k
e
.
b
a
i
d
u
.
c
o
m
/
i
t
e
m
/
行
对
应
除n-1使样本方差作为总体方差σ^2的无偏话计量\\n-1 与自由度 https://baike.baidu.com/item/%E8%87%AA%E7%94%B1%E5%BA%A6/5936984?fr=aladdin 行对应
除n−1使样本方差作为总体方差σ2的无偏话计量n−1与自由度https://baike.baidu.com/item/行对应
1
n
∑
i
=
1
n
(
X
i
−
X
ˉ
)
2
=
1
n
∑
i
=
1
n
X
i
2
−
X
ˉ
2
E
(
1
n
∑
i
=
1
n
(
X
i
−
X
ˉ
)
2
)
=
E
(
1
n
∑
i
=
1
n
X
i
2
−
X
ˉ
2
)
=
E
(
1
n
∑
i
=
1
n
X
i
2
)
−
E
(
X
ˉ
2
)
=
E
(
1
n
∑
i
=
1
n
X
i
2
)
−
(
D
(
X
ˉ
)
+
E
(
X
ˉ
)
2
)
=
(
σ
2
+
μ
2
)
−
(
σ
2
n
+
μ
2
)
=
n
−
1
n
σ
2
\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2 =\frac{1}{n}\sum_{i=1}^{n} X_i^2-\bar{X}^2\\ E( \frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2 )=E( \frac{1}{n}\sum_{i=1}^{n} X_i^2-\bar{X}^2 )\\ =E( \frac{1}{n}\sum_{i=1}^{n} X_i^2)-E(\bar{X}^2 )\\ =E( \frac{1}{n}\sum_{i=1}^{n} X_i^2)-(D(\bar{X} )+ E(\bar{X} )^2 )\\ =(σ ^2+μ^2)-(\frac{σ ^2}{n}+μ^2)=\frac{n-1}{n} σ ^2
n1i=1∑n(Xi−Xˉ)2=n1i=1∑nXi2−Xˉ2E(n1i=1∑n(Xi−Xˉ)2)=E(n1i=1∑nXi2−Xˉ2)=E(n1i=1∑nXi2)−E(Xˉ2)=E(n1i=1∑nXi2)−(D(Xˉ)+E(Xˉ)2)=(σ2+μ2)−(nσ2+μ2)=nn−1σ2
E ( S 2 ) = E ( 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 ) = σ 2 E(S^2)=E(\frac{1}{n-1} \sum_{i=1}^n(X_i-\bar{X})^2 )=σ ^2 E(S2)=E(n−11i=1∑n(Xi−Xˉ)2)=σ2