谈谈异方差性

谈谈异方差性

本文将讨论违背基本假定的另一个方面———异方差性(研究对象为随机扰动项)

第一节 异方差性的概念

一、异方差性的实质

在基本假定中,要求对所有的i(i=1,2,…,n)都有
在这里插入图片描述
也就是说ui具有同方差性。这里的方差度量的是随机扰动项围绕其均值的分散程度。由于E(ui)=0,所以可以等价地说,方差度量的是被解释变量Y的观测值围绕回归线的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。

设模型
在这里插入图片描述
如果其他假定均不变,但模型中随机扰动项ui的方差为:
在这里插入图片描述
则称ui具有异方差性。由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,所以可以把异方差看成由某个解释变量的变化而引起的。

二、产生异方差的原因

通常产生异方差有以下主要原因:
(1)模型设定误差
模型的设定主要包括变量的选择和模型数学形式的确定。模型中略去了重要的解释变量常常会导致异方差,省去的解释变量会纳入随机扰动项中,而如果这些影响因素的变化具有差异性,则会对被解释变量产生不同影响,这实际是模型设定问题。
我们知道,可以通过剔除变量的方法去避免多重共线性的影响,但是如果删除了重要的变量又有可能引起异方差性。这是在建模中应当引起注意的问题。除此之外,模型的函数形式不正确,如果把变量间本来为非线性的关系设定为线性,也可能会导致异方差。
(2)测量误差的变化
样本数据的观测误差有可能随着研究范围的扩大而增加,或随着时间得推移逐步积累,也可能随着观测技术的提高而逐步减小。例如,生产函数模型,由于生产要素的投入的增加与生产规模相联系,在其他条件不变的情况下,测量误差可能会随着生产规模的扩大而增加,随机误差项的方差会随着资本和劳动力投入的增加而变化。另外,当用时间序列数据估计生产函数时,随着抽样技术和数据收集处理方法的改进,观测误差有可能会随着时间的推移而降低。
(3)截面数据中总体各单位的差异
通常认为,截面数据较时间序列数据更容易产生异方差。这是因为同一时间不同对象的差异,一般会大于同一对象不同时间的差异。不过,当时间序列数据发生较大变化的情况下,也可能出现比截面数据更严重的异方差。

以上只是对异方差产生的经验总结,在建立模型中,具体产生异方差的原因,还要应对变量的经济意义和数据所表现出的特征进行认真的分析。

第二节 异方差性的后果

一、对参数估计式统计特性的影响

1、参数的OLS估计仍然具有无偏性

由参数估计的统计特性可知,参数OSL估计的无偏性仅依赖于基本假定中误差项的零均值假定(即E(ui)=0),以及解释变量的非随机性,所以,异方差的存在并不影响参数估计式的无偏性

2、参数OLS估计式的方差不再有效

在模型参数的所有线性估计式中,OLS估计方差最小的重要前提条件之一是随机扰动项为同方差,如果随机扰动项是异方差的,将不能再保证最小二乘估计的方差最小。这时,我们要寻找比OLS估计的方差更小的估计方法。也就是说,在异方差存在时,虽然OLS估计仍保持线性无偏性和一致性,但已失去了有效性࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小高要坚强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值