计算两张人脸对应关键点位置之间的l2距离_11. CosFace - 人脸识别

本文介绍了CVPR2018的CosFace论文,该研究改进了Angular Softmax Loss,提出Large Margin Cosine Loss,通过L2归一化增强人脸识别的特征判别性。实验表明,特征规范化和余弦margin能有效提升模型在多个数据集上的表现。
摘要由CSDN通过智能技术生成

Paper name

CosFace: Large Margin Cosine Loss for Deep Face Recognition

Paper Reading Note

URL: https://arxiv.org/pdf/1801.09414.pdf

TL;DR

该篇文章出自CVPR2018,在Angular softmax loss基础上改进得到Large Margin Cosine Loss,同时在SphereFace的基础上提出特征规范化,在多个人脸识别数据集上取得了SOTA结果。


Introduction

  • 最近的研究发现基于传统的softmax loss训练得到的模型所生成的softmax loss的判别能力不够强,为了提高特征的判别能力,如Angular softmax loss之类的方法被提出用于增加模型生成的特征的类内相似性与类间区分度。Angular softmax loss将原始欧式空间中的特征投影到超球面的特征空间上,并且提出了angular margin用于增加类间区分度。作者任务超球面空间的angular margin相比于欧氏距离的margin更有优势,因为因为角度的余弦与softmax函数具有内在一致性。
  • 作者认为angular margin还不足够合理。余弦公式与人脸识别中常用的相似性度量方法相匹配,从这个角度看,直接在不同类别之间引入余弦margin来改进余弦相关的判别信息更为合理。
  • 在本文中,作者通过L2归一化特征和权重向量消除径向变化,将softmax loss重新改造为cosine loss,在此基础上引入余弦margin来进一步最大化超球面特征空间中的决策裕度。

Dataset/Algorithm/Model/Experiment Detail

实现方式

  • 一句话介绍完这篇paper的创新点就是将angular softmax loss中的loss设计进行了以下替换:
    • A-softmax loss

c5c2648b9e15a5cd46274a8a0d7b6ec9.png <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值