labelimg批量标注图片_炼丹笔记五:数据标注

本文介绍了数据标注的重要性,涉及文本、图片、音频、视频等不同类型的标注方法,强调了标注流程、角色分工、工具选择以及质量控制。特别提到了LabelImg等图像标注工具,并分享了数据标注的经验与技巧。
摘要由CSDN通过智能技术生成

9576cf0152f040d879109de37158149a.png

欢迎大家关注微信公众号:baihuaML白话机器学习

20a01fea422daa3dd4a2005b244bcb2d.png

在这里,我们一起分享AI的故事。

您可以在后台留言,关于机器学习、深度学习的问题,我们会选择其中的优质问题进行回答!

深度学习的训练离不开有标签的数据,而这些标签数据的获取往往需要耗费大量的人力和财力以及时间。作为AI产品落地中,重要的一环,我们在进行数据标注时需要注意哪些问题呢?

本期问题

能不能谈一谈数据标注中,需要注意的问题?

什么是数据标注?

在谈数据标注是什么之前,我们首先来了解一下什么是数据。如果把人工智能比作金字塔,最顶端的是人工智能应用(比如无人车、机器人等),而最低端则是数据服务。人工智能的最终目标使计算机能够模拟人的思维方式和行为。若想达到这个目标,则需要大量优质

要使用YOLO进行批量标注图片,可以按照以下步骤: 1. 准备数据集:将需要标注图片保存在一个文件夹中,并在该文件夹中创建一个labels子文件夹用于保存标注结果。 2. 安装YOLO:按照YOLO官方文档的指引,安装YOLO。 3. 创建标注文件:使用YOLO提供的labelImg工具或其他标注工具,创建标注文件。标注文件应该包含每张图片中所有目标的类别和位置信息。 4. 将标注文件转换为YOLO格式:将标注文件转换为YOLO所需的格式。YOLO要求每个标注文件包含一行数据,该行数据应该包含目标的类别和位置信息。位置信息应该是目标在图片中的中心点坐标、宽度和高度,以及相对于图片大小的比例。 5. 执行批量标注脚本:编写一个Python脚本,使用YOLO提供的API读取每个图片和相应的标注文件,并将标注结果保存在labels子文件夹中。 以下是一个简单的Python脚本示例: ``` import os import cv2 import numpy as np import glob # 标注文件所在目录 label_dir = "labels" # 图片文件所在目录 image_dir = "images" # YOLO配置文件 cfg_file = "yolov3.cfg" # YOLO权重文件 weight_file = "yolov3.weights" # YOLO类别文件 class_file = "coco.names" # 加载YOLO模型 net = cv2.dnn.readNetFromDarknet(cfg_file, weight_file) # 加载类别文件 classes = [] with open(class_file, "r") as f: classes = [line.strip() for line in f.readlines()] # 遍历图片文件 for image_file in glob.glob(os.path.join(image_dir, "*.jpg")): # 加载图片 image = cv2.imread(image_file) height, width, channels = image.shape # 执行YOLO检测 blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] outputs = net.forward(output_layers) # 解析YOLO输出 boxes = [] confidences = [] class_ids = [] for output in outputs: for detection in output: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5: center_x = int(detection[0] * width) center_y = int(detection[1] * height) w = int(detection[2] * width) h = int(detection[3] * height) x = int(center_x - w / 2) y = int(center_y - h / 2) boxes.append([x, y, w, h]) confidences.append(float(confidence)) class_ids.append(class_id) # 标注结果保存到文件 label_file = os.path.join(label_dir, os.path.basename(image_file).replace(".jpg", ".txt")) with open(label_file, "w") as f: for i in range(len(boxes)): class_name = classes[class_ids[i]] x, y, w, h = boxes[i] x_rel = x / width y_rel = y / height w_rel = w / width h_rel = h / height f.write(f"{class_name} {x_rel:.6f} {y_rel:.6f} {w_rel:.6f} {h_rel:.6f}\n") ``` 该脚本使用OpenCV的DNN模块执行YOLO检测,并将标注结果保存到labels子文件夹中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值