我曾经创建循环来为模型找到最佳参数,这增加了我的编码错误,因此我决定使用GridSearchCV.
我正在尝试为我的模型找出PCA的最佳参数(我要在其上进行网格搜索的唯一参数).
在此模型中,归一化后,我想将原始特征与PCA简化特征结合起来,然后应用线性SVM.
然后,我保存整个模型以预测我的输入.
我在尝试拟合数据的行中出现错误,因此可以使用best_estimator_和best_params_函数.
错误显示:TypeError:score函数应该是可调用的,所有(< type'str'>)类型都已传递.我没有使用任何可能需要在GridSearchCV中提供字符串的参数,所以不确定为什么会出现此错误
我还想知道在保存模型之前,行print(“ model after model”,X.shape)是否应该基于所有可能的参数同时打印(150,7)和(150,5)?
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest
from sklearn.preprocessing import StandardScaler
from sklearn.externals import joblib
from numpy import array
iris = load_iris()
<