python 网格搜索 卡死_python-TypeError网格搜索

本文档探讨了在使用Python的GridSearchCV进行参数优化时遇到的TypeError问题,以及如何正确保存和加载最佳模型。作者通过创建Pipeline结合PCA和SVM,并进行网格搜索以找到PCA的最佳参数。在调试过程中,发现错误源于score函数要求可调用,而传入了字符串。同时,对于模型训练后数据形状的疑惑也得到了解答。
摘要由CSDN通过智能技术生成

我曾经创建循环来为模型找到最佳参数,这增加了我的编码错误,因此我决定使用GridSearchCV.

我正在尝试为我的模型找出PCA的最佳参数(我要在其上进行网格搜索的唯一参数).

在此模型中,归一化后,我想将原始特征与PCA简化特征结合起来,然后应用线性SVM.

然后,我保存整个模型以预测我的输入.

我在尝试拟合数据的行中出现错误,因此可以使用best_estimator_和best_params_函数.

错误显示:TypeError:score函数应该是可调用的,所有(< type'str'>)类型都已传递.我没有使用任何可能需要在GridSearchCV中提供字符串的参数,所以不确定为什么会出现此错误

我还想知道在保存模型之前,行print(“ model after model”,X.shape)是否应该基于所有可能的参数同时打印(150,7)和(150,5)?

from sklearn.pipeline import Pipeline, FeatureUnion

from sklearn.model_selection import GridSearchCV

from sklearn.svm import SVC

from sklearn.datasets import load_iris

from sklearn.decomposition import PCA

from sklearn.feature_selection import SelectKBest

from sklearn.preprocessing import StandardScaler

from sklearn.externals import joblib

from numpy import array

iris = load_iris()

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值