朗读者:魏俊祥(幸福六班)
从钉子截面不同的常识中,我们知道了,在面积相等的情况下,三角形、 正方形、圆形三者相比,圆的周长是最小的。反过来讲,如果周长相等的三角形、正方形、圆形,哪个的面积最大呢?答案是圆形的面积最大。 下面就让我们揭开这个谜。
生活中有很多圆形的建筑或者物品,大草原上的羊圈、牛圈通常都圈成圆形的,牧民们的蒙古包也是圆形的,我们家中的水壶、油瓶、桌面、大烟囱,一般也会设计成圆形。那是因为用同样多的材料,把物体做成圆形能得到最大的面积。有的小朋友会问了:怎样证明是圆的面积最大呢?我们在一张大纸上面画上许多大小一样的小方格,拿一根细细的线绳,把两头接起来,让它变成一个封闭的图形,也就是一个线圈,保持线绳的长度不变,无论把它变化成什么形状,周长都是相等的,然后把线圈分别做成三角形、正方形、圆形,把不同形状的线绳分别放在小方格上,看看它们分别能圈下多少块小方格,那些不满一个小方格的部分可以拼起来计算。每个图形所圈住的小方格的数量就代表了这个图形的面职。结果显而易见,圆形圈住的小方格是最多的。由此证明,在周长都相等的情况可,圆形的面积是最大的。