第二章、多元正态分布及参数估计
这一讲主要是给出概率论中若干概念向高维的推广
2.1随机向量
一、随机向量的联合分布、边缘分布和条件分布
1、多元数据 维随机向量:
,其中每个
都是随机变量
随机矩阵:
,其中每个
都是
维随机变量,它代表了
维随机向量的
个样本,其中每一行都是一个样本。回顾一下数理统计中的简单样本
,这里的高维样本不过是将每个
变成了一个
维的向量.
2、多元分布
1、分布函数
类似一维情形
2、密度函数
为多维实值函数满足
3、边际分布
考虑变量之间的独立性时,往往会涉及到边际分布。对于一个
维随机向量,设其中一个
维子向量为
,那么该子向量的分布便是边际分布,计算方法如下
也就是分布函数中不在
中的变量取值为无穷大.
ps:如果是求边际密度,则为联合密度对不在不在
中的变量求全积分.
4、条件分布
设
,则在给定
的条件下,
的条件分布为
5、相互独立联合密度等于边际密度的乘积
设
的联合密度与各自的边际密度满足
联合分布函数可分离
二、随机向量的数字特征
设
是两个随机向量
1、均值向量
2、
的协方差阵
3、
和
的协方差阵
如果
,则称
不相关.
4、
的相关系数矩阵