随机变量
离散型随机变量
定义
分布律
常见概率分布
名称 | 意义描述 | 概率描述 |
---|---|---|
退化分布 | 随机变量只取一个常数值C | P(X=c)= 1 |
0-1分布 | 随机变量只取两个值0和1 | P(X=0) = 1-p (p>0) P(X=1) = p 称X服从参数为p的0-1分布 |
二项分布 | 对n重伯努利试验,每次成功概率为p, 定义随机变量X描述n次试验中事件A可能发生的次数k |
P
(
X
=
k
)
=
C
n
k
P
k
(
1
−
p
)
n
−
k
P(X=k) = C_n^kP^k(1-p)^{n-k}
P(X=k)=CnkPk(1−p)n−k k=0,1,2… 称X服从参数为n和p的二项分布, 即X~b(n,p) 或者X~B(n,p) |
泊松分布 | 随机变量X可以取一切非负整数值,取这些值的概率是-> |
P
(
X
=
k
)
=
λ
k
k
!
e
−
k
P(X=k)=\frac{\lambda^k}{k!}e^{-k}
P(X=k)=k!λke−k k=0,1,2… 称X服从参数为 λ \lambda λ 的泊松分布 即X~π( λ \lambda λ) |
几何分布 | 单次实验中事件A发生的概率是p,现重复多次,直到A出现位置。X为事件A首次发生时所进行的试验次数 |
P
(
X
=
k
)
=
(
1
−
p
)
k
−
1
p
P(X=k) = (1-p)^{k-1}p
P(X=k)=(1−p)k−1p k=1,2,3 称X服从参数为 p 的几何分布 |
二项分布的重要性质
- b(k,n,p) = b(n-k,n,1-p)
- 增减性及最可能成功的次数
-
n
→
∞
n\rightarrow\infty
n→∞ 时的渐近性质——泊松定理
泊松定理
近似计算:
泊松分布
背景
Remark1
意思是,n次呼叫,每次呼叫的概率是p,那么我平均呼叫的次数就是np(=λ)