概率论——随机变量及其分布

随机变量

在这里插入图片描述
在这里插入图片描述

离散型随机变量

定义

分布律

在这里插入图片描述

常见概率分布

名称意义描述概率描述
退化分布随机变量只取一个常数值CP(X=c)= 1
0-1分布随机变量只取两个值0和1P(X=0) = 1-p (p>0)
P(X=1) = p
称X服从参数为p的0-1分布
二项分布对n重伯努利试验,每次成功概率为p,
定义随机变量X描述n次试验中事件A可能发生的次数k
P ( X = k ) = C n k P k ( 1 − p ) n − k P(X=k) = C_n^kP^k(1-p)^{n-k} P(X=k)=CnkPk(1p)nk k=0,1,2…
称X服从参数为n和p的二项分布,
即X~b(n,p) 或者X~B(n,p)
泊松分布随机变量X可以取一切非负整数值,取这些值的概率是-> P ( X = k ) = λ k k ! e − k P(X=k)=\frac{\lambda^k}{k!}e^{-k} P(X=k)=k!λkek k=0,1,2…
称X服从参数为 λ \lambda λ 的泊松分布
即X~π( λ \lambda λ)
几何分布单次实验中事件A发生的概率是p,现重复多次,直到A出现位置。X为事件A首次发生时所进行的试验次数 P ( X = k ) = ( 1 − p ) k − 1 p P(X=k) = (1-p)^{k-1}p P(X=k)=(1p)k1p k=1,2,3
称X服从参数为 p 的几何分布
二项分布的重要性质
  1. b(k,n,p) = b(n-k,n,1-p)
    在这里插入图片描述
  2. 增减性及最可能成功的次数
    在这里插入图片描述
    在这里插入图片描述
  3. n → ∞ n\rightarrow\infty n 时的渐近性质——泊松定理
    泊松定理
    在这里插入图片描述
    近似计算:
    在这里插入图片描述
泊松分布
背景

在这里插入图片描述

Remark1

在这里插入图片描述
意思是,n次呼叫,每次呼叫的概率是p,那么我平均呼叫的次数就是np(=λ)

连续型随机变量

背景

在这里插入图片描述

定义

在这里插入图片描述

概率与分布函数

在这里插入图片描述

特性

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值