协方差矩阵行列式为0_分块矩阵及其统计学应用

本文介绍了分块矩阵的概念及性质,包括加法、乘法、行列式和逆的计算。重点阐述了当协方差矩阵行列式为0时的分块矩阵,并探讨了其在统计学中的应用,特别是在回归分析中的作用,强调了在模型选择中去除冗余变量以提高估计效率的重要性。
摘要由CSDN通过智能技术生成

分块矩阵

若A为阶矩阵,分成四块,使得

则称

为矩阵A的分块表示形式。分块矩阵有以下性质: 

性质1. 分块矩阵的加法

若A和B有相同的分块,则

性质2. 分块矩阵的乘法

若A为矩阵,C为矩阵,则

性质3.分块矩阵的行列式

若和均为方阵,则

(1)若,则其中.

(2)若,则其中.

性质4.分块矩阵的逆

若为可逆矩阵,为方阵,则

(1)若,则

(2)若,则

特别地,当且,我们有

性质5.分块矩阵的正定性

若A是正定的,即,则和均是正定矩阵。

对性质3和4的证明

要证明性质3和4,关键是将分块矩阵变换为对角分块矩阵,即想办法将和变为0子块。为进行说明,可首先考虑的矩阵。

下面将矩阵

变换为对角阵。

如何变换呢?答案很简单,进行初等行列变换即可。将第一行乘以加到第二行,从而将原矩阵的变为0;再将第一列乘以加到第二列即可将原矩阵的变为0。写成矩阵的形式就是:

而对于分块矩阵,我们也可类似操作。将第一行乘以加到第二行,从而将原矩阵的变为0子块;再将第一列乘以加到第二列即可将原矩阵的变为0子块。写成矩阵的形式就是:

左右两边同时取行列式,即得到:

从而得到性质3.

而对于性质4,则在上式两边同时取逆,则得到:

由此可得:

435926465e4e6a679d9dfbbe4d45d260.png

整理后即为性质4.

含义

性质3和性质4表明了非对角阵和对A的行列式和逆的影响。另外还需要注意的是,在A非负定时,

分块矩阵在统计学中的应用

分块矩阵在统计学中起到很重要的作用。实际上,只要涉及到对参数向量或随机向量进行分割时,分块矩阵都扮演重要角色。因而其在回归分析、多元正态分布和多参数极大似然等问题当中都有应用。以下为回归分析为例加以说明。

假定是一元响应变量,是p维自变量,而是q维分量。另外假定分别是和的样本矩阵。同时假定和具有线性关系。即假定模型

成立。为简单起见,假定X是固定设计满足同方差,即。现讨论如何对参数进行估计?

我们可以有两种思路:

  1. 只基于做回归拟合,则此时

同时其协方差矩阵为:

  1. 基于全部自变量做回归拟合,则此时

则的协方差矩阵为

而 对应的协方差矩阵为

现在问:和谁更有效?对此,我们需要比较和。首先注意到

从而根据分块矩阵的逆,可知:

这表明:对于参数的估计,只基于做回归拟合比基于全部自变量做回归拟合更有效!

既然这样,我们为何还要考虑呢?答案是:除了有效性,我们还关心无偏性!尽管更有效,但它可能是有偏的。实际上,我们有:

上式说明,其偏差依赖于和的相关性,也依赖于的取值。若,即此时真实模型只依赖于,则此时无偏且更有效;若,即真实模型依赖于和,则此时尽管更有效但有偏。

总结起来:

  1. 若真实模型只依赖于,则应只基于建模,不需要考虑冗余变量;

  2. 若真实模型依赖于和, 则需要同时考虑它们。

在实际中,真实模型是否只依赖我们是不知道的。这就产生了变量选择的需要。尽可能将冗余变量筛除,只保留重要变量,可以提高估计的效率。

如果觉得本文不错,请点赞关注!

31da11085a6f5099e2d6e755ccc31f1c.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值