unet论文_图像分割之RefineNet 论文笔记

34f21ec40879e8c915d50233b6c883e6.png

RefineNet: Multi-Path Refinement Networks forHigh-Resolution Semantic Segmentation (2017) 论文笔记

文章的创新点在于decoder的方式,不同于U-Net在上采样后直接和encoder的feature map进行级联,本文通过RefineNet进行上采样,把encoder产生的feature和上一阶段decoder的输出同时作为输入,在RefineNet中进行一系列卷积,融合,池化,使得多尺度特征的融合更加深入。 另一创新点就是RefineNet模块中的链式残余池化,为了验证这个模块的效果,作者做了对比实验,证明在加入该模块后,分割效果确实变好了。

1. Abstract

    • 为了解决下采样过程中导致的信息损失,论文提出了RefineNet,通过利用下采样过程中能够获取到的所有信息。
    • 网络组建使用了恒等映射的残余连接。
    • 另外,论文还介绍了链式残余池化(chained residual pooling ),可以高效的获取背景信息。
    • 在公共数据集(VOC 2012)中做了实验,实现了最佳效果

2. Introduction

反卷积不能恢复low-level的feature,deeplab使用空洞卷积来解决这一问题。

但是空洞卷积有两个问题:

      • 对高像素feature map的卷积会消耗算力,同时也需要大的GPU内存,通常对于高像素的图都会resize
      • 空洞卷积的特性决定了它会损失一些细节信息。

FCN等方法提出的特征融合虽然能够保留低维和高维信息,但缺少了空间信息

本文的贡献:

      • 提出了RefineNet,它是一种多路径的提炼网络,利用多级抽象特征进行高分辨率的语义分割,通过递归方式提炼低分辨率的特征,生成高分辨率的特征
      • 级联的refineNet可以end-to-end训练,使用了恒等映射的残余连接
      • 提出了链式残余池化。使用不同尺寸的窗口池化,并且使用残余连接和可学习的权重把他们融合起来

3. Related work

    • 提到了FCN,segnet,deconvnet, unet, deeplab v2等
    • 能够利用低维的feature来精炼高维的semantic feature.
    • 使用了短范围和长范围的残余连接,实验表明,我们的网络十分有效。

4. Background

分析resnetnet

      • 降采样增加了感受野
      • 提高了训练效率
      • 一般的最终会降采样到1/32,会损失信息,可选的解决方法是使用空洞卷积

deeplab v2

      • 降采样操作全部被取消,在第1个block之后的卷积层全部使用空洞卷积。优点是在不增加参数的情况下增加了感受野。
      • 文章说,空洞卷积很消耗内存,原因在于空洞卷积在较高分辨率上保留大量的feature map,在网络的后层通道数很多。
      • 我的理解是因为少了下采样,feature map自然就会很大,但对于文章所说的后层通道数增多不太理解。

5. 网络结构

    • 网络整体结构

25ca41d780a087ab39cf34943a594b21.png
    • 下图是单独一个refineNet的结构,上面的图中包含了4个refineNet。

66cab840fe7c0a2f4f0ec4b28f797f4a.png
    • 也就是说,一个RefineNet相当于一个上采样模块,接受多个(一个)输入,输出一个。下采样是ResNet,然后经过4个RefineNet上采样,得到原来大小图。作者的创新点一方面在于提出了整个网络结构,另一方面是RefineNet模块中的链式残余池化。
    • 根据整体结构图可以看到,RefineNet-4只接受一个输入,后面的3个每个都接受两个输入。
    • RefineNet
      • 根据图片可以看到,每个RefineNet包含4个部分
        • Residual convolution unit :对ResNet block进行2层的卷积操作。注意这里有多个ResNet block作为输入。
        • Multi-resolution fusion:将1中得到的feature map进行加和融合。
        • Chained residual pooling :该模块用于从一个大图像区域中捕捉背景上下文。注意:pooling的stride为1。
        • Output convolutions:由三个RCUs构成。

Reference

https://zhuanlan.zhihu.com/p/37805109 RefineNet: Multi-Path Refinement Networks forHigh-Resolution Semantic Segmentation
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值