matlab arburg,Autoregressive all-pole model parameters — modified covariance method

Use a vector of polynomial coefficients to generate an AR(4) process by filtering 1024 samples of white noise. Reset the random number generator for reproducible results. Use the modified covariance method to estimate the coefficients.

rng default

A = [1 -2.7607 3.8106 -2.6535 0.9238];

y = filter(1,A,0.2*randn(1024,1));

arcoeffs = armcov(y,4)

arcoeffs = 1×5

1.0000 -2.7741 3.8404 -2.6841 0.9360

Generate 50 realizations of the process, changing each time the variance of the input noise. Compare the modified-covariance-estimated variances to the actual values.

nrealiz = 50;

noisestdz = rand(1,nrealiz)+0.5;

randnoise = randn(1024,nrealiz);

noisevar = zeros(1,nrealiz);

for k = 1:nrealiz

y = filter(1,A,noisestdz(k) * randnoise(:,k));

[arcoeffs,noisevar(k)] = armcov(y,4);

end

plot(noisestdz.^2,noisevar,'*')

title('Noise Variance')

xlabel('Input')

ylabel('Estimated')

95f7e7b2cdc5d891cf903a00999196da.png

Repeat the procedure using the function's multichannel syntax.

Y = filter(1,A,noisestdz.*randnoise);

[coeffs,variances] = armcov(Y,4);

hold on

plot(noisestdz.^2,variances,'o')

hold off

legend('Single channel loop','Multichannel','Location',"best")

3fcabaa4a22ea0491da35323b125e938.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值