2.3 AR(p)模型的谱密度和Yule-Walker方程(续)
七、自协方差函数的周期性分析(续)
上一讲的最后提到,自协方差函数最后能够写成一个带有三角函数的求和形式,因而具有周期性,但计算过程跳跃比较大,这一讲首先将其补充完整。
由于考虑的是具有p个互异根的情形,所以特征多项式可以表示为
取倒数后,就变成了一个有理分式,其中分母是连乘积的形式,根据代数理论可以将该有理分式分解得到
事实上系数
可以用
来表示出来,这里就默认是已知的,进而有
第一个等号是Yule-Walker方程的推论,第二个等号是将有理分式分解的结果,第三个等号将分式泰勒展开为幂级数,第四个等号将后移算子作用到
上,
第五个等号利用Wold系数下标大于等于0,即小于0的Wold系数为0,
第六个等号将
拆成两部分旨在拼凑幂级数,
第七个等号即Wold系数的定义。
注意到
是复数,而自协方差函数为实数,进而利用每个复数根
的共轭也是特征多项式的根,利用欧拉公式取其中实数部分,则为
或
的形式,进而可以利用两角和公式,最后化成一个cos的形式,即
其中
为
的实数部分。
例 对于AR(4)模型,特征多项式的根设为
则周期分别为
和
分别画出谱密度和自协方差函数图像得到
从谱密度函数图像可以看出,谱密度确实在
处达到峰值,从自协方差函数图像来看,大圆点大致周期为6,小圆点的大致周期为3(大圆点中有小圆点)。
类比以下 根较为远离单位圆的的模型:
其谱密度图像和自协方差函数的图像分别为
可以看出,因为根远离单位圆,衰减比较厉害,所以峰值和周期性不大看的出来。
八、自协方差函数的正定性(重点)
根据Yule-Walker方程的可以看出,AR(p)模型的自协方差函数能够由白噪声方差和自回归系数唯一确定,那么反过来,能否由自协方差函数来确定白噪声方差和自回归系数呢?
我们回顾n=p情形下的Yule-Walker方程
可以看出,只要
正定,那么就能由Yule-Walker方程解出自回归系数了,同时再取0阶自协方差函数,就得到白噪声的方差,用数学式子表示就是
而我们一开始就介绍过平稳序列的自协方差具有非负定性,如果它不是正定的,就相当于这个时间序列中