mfc 算方差函数_时间序列分析第04讲(自协方差矩阵正定性、偏相关系数和Levinson递推公式)...

本文深入探讨AR(p)模型的自协方差函数正定性,解析Yule-Walker方程及其在最优线性预测、偏相关系数中的应用。通过Levinson递推公式解决方程,并以AR(1)和AR(2)模型为例展示计算过程。
摘要由CSDN通过智能技术生成

2.3 AR(p)模型的谱密度和Yule-Walker方程(续)

七、自协方差函数的周期性分析(续)

上一讲的最后提到,自协方差函数最后能够写成一个带有三角函数的求和形式,因而具有周期性,但计算过程跳跃比较大,这一讲首先将其补充完整。

由于考虑的是具有p个互异根的情形,所以特征多项式可以表示为

取倒数后,就变成了一个有理分式,其中分母是连乘积的形式,根据代数理论可以将该有理分式分解得到

事实上系数

可以用
来表示出来,这里就默认是已知的,进而有

第一个等号是Yule-Walker方程的推论,第二个等号是将有理分式分解的结果,第三个等号将分式泰勒展开为幂级数,第四个等号将后移算子作用到

上,
第五个等号利用Wold系数下标大于等于0,即小于0的Wold系数为0, 第六个等号将
拆成两部分旨在拼凑幂级数,
第七个等号即Wold系数的定义。

注意到

是复数,而自协方差函数为实数,进而利用每个复数根
的共轭也是特征多项式的根,利用欧拉公式取其中实数部分,则为
的形式,进而可以利用两角和公式,最后化成一个cos的形式,即

其中

的实数部分。

对于AR(4)模型,特征多项式的根设为

则周期分别为

分别画出谱密度和自协方差函数图像得到

e6fb5745d6a45f0313c5d8501d88bdb9.png
谱密度函数

0f6e8b49f2489efdf3687fdd05e4eadf.png
自协方差函数

从谱密度函数图像可以看出,谱密度确实在

处达到峰值,从自协方差函数图像来看,大圆点大致周期为6,小圆点的大致周期为3(大圆点中有小圆点)。

类比以下 根较为远离单位圆的的模型:

其谱密度图像和自协方差函数的图像分别为

c0606e924513bff7050b6454e3fcfd48.png
谱密度图像

f2f7aef9b5df183cf129d0a1e25af1d2.png
自协方差图像

可以看出,因为根远离单位圆,衰减比较厉害,所以峰值和周期性不大看的出来。

八、自协方差函数的正定性(重点)

根据Yule-Walker方程的可以看出,AR(p)模型的自协方差函数能够由白噪声方差和自回归系数唯一确定,那么反过来,能否由自协方差函数来确定白噪声方差和自回归系数呢?

我们回顾n=p情形下的Yule-Walker方程

可以看出,只要

正定,那么就能由Yule-Walker方程解出自回归系数了,同时再取0阶自协方差函数,就得到白噪声的方差,用数学式子表示就是

而我们一开始就介绍过平稳序列的自协方差具有非负定性,如果它不是正定的,就相当于这个时间序列中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值