【时间序列分析】05. AR(p)序列的自协方差函数与谱密度

本文深入探讨了AR(p)序列的自协方差函数和谱密度,揭示了其短记忆性和快速衰减的相关性。通过Yule-Walker方程的三种形式,阐述了计算AR(p)序列自协方差的方法,并介绍了谱密度的特性,为时间序列分析提供了关键理论基础。
摘要由CSDN通过智能技术生成

A R ( p ) {\rm AR}(p) AR(p) 序列的自协方差函数与谱密度

A R ( p ) {\rm AR}(p) AR(p) 序列的自协方差函数

写出 A R ( p ) {\rm AR}(p) AR(p) 模型的平稳解为
X t = A − 1 ( B ) ϵ t = ∑ j = 0 ∞ ψ j ϵ t − j   ,      t ∈ Z . X_t=A^{-1}(\mathscr{B})\epsilon_t=\sum_{j=0}^\infty\psi_j\epsilon_{t-j} \ , \ \ \ \ t\in\Z. Xt=A1(B)ϵt=j=0ψjϵtj ,    tZ.
由线性平稳序列的性质知 { X t } \{X_t\} { Xt} 为零均值 E ( X t ) = 0 {\rm E}(X_t)=0 E(Xt)=0 ,且有自协方差函数
γ k = E ( X t + k X t ) = σ 2 ∑ j − 0 ∞ ψ j ψ j + k   ,      k = 0 , 1 , 2 , . . . \gamma_k={\rm E}(X_{t+k}X_t)=\sigma^2\sum_{j-0}^\infty\psi_j\psi_{j+k} \ , \ \ \ \ k=0,1,2,... γk=E(Xt+kXt)=σ2j0ψjψj+k ,    k=0,1,2,...
之前已经证明 Wold 系数的负指数阶收敛性 ψ j = o ( ρ − j ) \psi_j=o(\rho^{-j}) ψj=o(ρj) 1 < ρ < min ⁡ { ∣ z j ∣ } 1<\rho<\min\{|z_j|\} 1<ρ<min{ zj} ,因此有
∣ γ k ∣ ≤ σ 2 ∑ j = 0 ∞ ∣ ψ j ∣ ∣ ψ j + k ∣ ≤ σ 2 ( ∑ j = 0 ∞ ψ j 2 ∑ j = 0 ∞ ψ j + k 2 ) 1 2 ≤ c 0 ( ∑ j = k ∞ ρ − 2 j ) 1 2 ≤ c 1 ρ − k |\gamma_k|\leq\sigma^2\sum_{j=0}^\infty|\psi_j||\psi_{j+k}|\leq\sigma^2\left(\sum_{j=0}^\infty\psi_j^2\sum_{j=0}^\infty\psi_{j+k}^2\right)^{\frac12}\leq c_0\left(\sum_{j=k}^\infty\rho^{-2j}\right)^\frac12\leq c_1\rho^{-k} γkσ2j=0ψjψj+kσ2(j=0ψj2j=0ψj+k2)21c0j=kρ2j21c1ρk
其中 c 0 ,   c 1 c_0,\,c_1 c0,c1 为正常数。因此 A R ( p ) {\rm AR}(p) AR(p) 序列的自协方差函数 { γ k } \{\gamma_k\} { γk} 也是以负指数阶收敛到 0 0 0 的,且 min ⁡ { ∣ z j ∣ } \min\{|z_j|\} min{ zj} 越大, ψ k \psi_k ψk 的收敛速度越快。说明 A R ( p ) {\rm AR}(p) AR(p) 序列前后的相关性减少很快,称为时间序列的短记忆性

Yule-Walker 方程

首先我们需要补充说明平稳解的合理性,即说明 t t t 时刻的随机现象 X t X_t Xt 和将来的白噪声 ϵ t + k ,   k ≥ 1 \epsilon_{t+k},\ k\geq1 ϵt+k, k1 无关。我们对平稳解的两边同乘 ϵ t + k \epsilon_{t+k} ϵt+k 并取数学期望,由控制收敛定理得到
E ( X t ϵ t + k ) = ∑ j = 0 ∞ ψ j E ( ϵ t − j ϵ t + k ) = 0   ,      k ≥ 1. {\rm E}(X_t\epsilon_{t+k})=\sum_{j=0}^\infty\psi_j{\rm E}(\epsilon_{t-j}\epsilon_{t+k})=0 \ , \ \ \ \ k\geq1. E(Xtϵt+k)=j=0ψjE(ϵtjϵt+k)=0 ,    k1.
特别地,如果 { ϵ t } \{\epsilon_t\} { ϵt} 是独立白噪声,则 X t X_t Xt 和将来的白噪声独立。

本章中我们先给出 Yule-Walker 方程的表现形式,然后在给予推导。

形式一: A R ( p ) {\rm AR}(p) AR(p) 序列的自协方差函数满足 A R ( p ) {\rm AR}(p) AR(p) 模型 A ( B ) X t = ϵ t A(\mathscr{B})X_t=\epsilon_t A(B)Xt=ϵt 相应的其次差分方程
γ k = a 1 γ k − 1 + a 2 γ k − 2 + . . . + a p γ k − p   ,      k ≥ 1 \gamma_k=a_1\gamma_{k-1}+a_2\gamma_{k-2}+...+a_p\gamma_{k-p} \ , \ \ \ \ k\geq1 γk=a1γk1+a2γk2

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值