上下相机贴合对位计算公式_视觉定位系统如何实现定位及引导贴合的应用

机器视觉系统可以起到人类视觉的作用,利用自动化科技来替代人眼,使质量进一步升级,不仅可以提高工作效率,而且减少了人工产生的不确定因素对质量控制效果的影响。而且基于机器视觉系统对位贴合系统可以做到贴合精度高,速度快,节省人力的特点。

视觉定位系统案例详解

方案采用上下双层送料方式,分为工位一、工位二,下层为盖板,双工位循环进出工作。由于客户的产品体积大,一个相机无法保证装配的精度,我们决定采用工业机器人+双相机方案,以相机引导机器人到达对应位置来实现定位及引导贴合的应用。

系统中的双相机分别安装在机器人的上方,通过计算标准拍照位置与实际拍照位置的位置与角度的差异来补正装配位置。

设备示意图

196eedddd4c7a2264983060799f7116f.png

实施步骤:

1.训练(示教)

机器人从最优装配位置取一块安装好的工件到相机拍照位置,通过定位工具训练工件,记录特征点的图像上的坐标与空间上坐标以及特征角度。

2.运行

每次运行通过定位工具,获取当前工件特征点在图像空间中的坐标,再通过标定工具,将特征点的图像坐标转换为空间坐标。

3.计量偏移量

计算运行时工件特征点与训练时保存的特征点在空间坐标上的差值,及特征角度的差值。

4.输出结果

将计算结果通过网口通讯发送给机械手进行装配位置补正。

视觉定位系统应用前景

本文描述了基于机器视觉的工业机器人视觉定位系统,该系统运用快速识别工件特征边界和质心,数据分析和计算。机器人通过计算出的结果进行调整为姿,从而解决了机器人末端实际位置与期望位置相距偏差的问题,改善了装配机机器人的定位精度。该方法计算量小,定位准确,速度快,具有工程实用性,有很大的发展前景。

四元数致力于运动控制、图像与视觉传感等工业自动化技术的研发和应用,产品广泛应用于印刷设备、模切设备、贴合设备、多轴数控设备、机械手、电子加工和检测设备、激光加工设备、抛光机械生产自动化等工业控制领域。

<think>好的,用户想了解机器视觉对位贴合方面的技术实现方案。首先,我需要回忆一下之前提供的相关引用内容,确保信息准确。根据引用[1]、[2]、[3]、[4],系统主要由视觉定位、偏差计算、运动控制和贴合执行组成。需要分步骤解释每个部分的具体实现方法,比如相机标定、靶标识别、坐标转换等。 用户可能是工程师或技术人员,他们可能在实际应用中遇到对位精度的问题,或者需要优化现有系统。因此,回答中需要详细说明关键技术,如九点标定法、图像处理算法,以及如何补偿机械误差。还要提到常见的应用场景,比如3C产品组装、汽车制造,这样用户能结合实际需求考虑。 此外,用户可能关心系统的稳定性和效率,所以需要强调实时性、抗干扰能力和多相机协同。同时,结合引用中的案例,比如背光贴合对屏幕质量的影响,可以具体说明技术带来的好处,如减少气泡、提高良率。最后,生成的问题应覆盖技术难点、标定方法、误差因素和行业应用,帮助用户深入理解。</think>### 机器视觉对位贴合技术实现方案 机器视觉对位贴合技术通过**视觉定位+运动控制**实现高精度位置补偿,主要流程分为以下步骤: 1. **系统搭建与标定** - 使用至少两个工业相机(非对位平台与对位平台各一个),通过**九点标定法**建立坐标系映射关系[^2] - 标定公式推导: $$ \begin{cases} x' = a_1x + b_1y + c_1 \\ y' = a_2x + b_2y + c_2 \end{cases} $$ 通过最小二乘法求解转换矩阵参数 - 需补偿机械传动误差(如丝杆反向间隙、皮带弹性形变) 2. **靶标识别与定位** - 采用**特征匹配算法**(SIFT/SURF)或专用靶标(十字线、同心圆) - 图像处理流程: ```mermaid graph TD A[图像采集] --> B(灰度化) B --> C(高斯滤波) C --> D(二值化) D --> E(轮廓提取) E --> F(质心计算) ``` 3. **偏差计算与运动补偿** - 计算平移偏差$(\Delta x, \Delta y)$和旋转偏差$\theta$ - 运动学逆解模型示例(XYθ平台): $$ \begin{bmatrix} X_{cmd} \\ Y_{cmd} \\ \theta_{cmd} \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta\theta \end{bmatrix} $$ 4. **贴合工艺控制** - 压力控制采用PID算法,压力曲线满足: $$P(t) = P_{max}(1-e^{-t/\tau})$$ - 视觉引导贴合精度可达±0.01mm,适用于OLED屏贴合[^3] **关键技术指标**: - 定位重复精度:≤±3μm - 处理周期:<200ms - 支持多相机协同(最多8相机系统) **典型应用案例**: - 手机盖板与触控屏贴合(气泡率<0.1%) - 汽车仪表盘多层组装 - 柔性电路板精准对位[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值