自动控制:基于预设性能控制(PPC)的控制系统设计

自动控制:基于预设性能控制(PPC)的控制系统设计

在控制系统设计中,瞬态性能与稳态性能同等重要。对于某些特殊的动态系统而言,瞬态性能甚至比稳态性能更为重要。预设性能控制(Preset Performance Control, PPC)已被证明是一个强大的工具,它保证了控制系统的输出/误差具有所需的瞬态性能以及稳态性能。

本文将简单介绍预设性能控制的概念,包括性能函数的定义以及基于PPC的控制器设计方法。

性能函数

性能函数用于描述控制系统的预期性能指标,包括瞬态性能和稳态性能。常用的性能函数包括:

  • 超调量(Overshoot):输出超过设定值的最大百分比。
  • 上升时间(Rise Time):输出从10%达到90%设定值所需的时间。
  • 调节时间(Settling Time):输出进入并保持在设定值的±2%范围内所需的时间。
  • 稳态误差(Steady-State Error):系统达到稳态时的误差。

为了满足这些性能指标,PPC通过设计适当的性能函数来控制系统的瞬态响应和稳态性能。常见的性能函数形式如下:

Φ ( t ) = Φ 0 e − α t + Φ ∞ \Phi(t) = \Phi_0 e^{-\alpha t} + \Phi_\infty Φ(t)=Φ0eαt+Φ

其中:

  • Φ ( t ) \Phi(t) Φ(t) 为性能函数,描述系统的预期性能。
  • Φ 0 \Phi_0 Φ0 为初始值,通常与初始误差相关。
  • α \alpha α 为衰减率,控制瞬态性能。
  • Φ ∞ \Phi_\infty Φ 为稳态值,通常与稳态误差相关。

性能函数的设计需要根据具体系统的性能要求进行调整,以满足不同的瞬态和稳态性能指标。

基于PPC的控制器设计

基于PPC的控制器设计通过引入性能函数,将系统的误差动态转化为预设性能轨迹,从而实现对系统的控制。具体步骤如下:

步骤1:定义误差和性能函数

定义系统的误差 e ( t ) e(t) e(t),并设计相应的性能函数 Φ ( t ) \Phi(t) Φ(t)。假设系统的参考输入为 r ( t ) r(t) r(t),输出为 y ( t ) y(t) y(t),则误差 e ( t ) e(t) e(t) 定义为:

e ( t ) = r ( t ) − y ( t ) e(t) = r(t) - y(t) e(t)=r(t)y(t)

设计性能函数 Φ ( t ) \Phi(t) Φ(t),并将其定义为误差 e ( t ) e(t) e(t) 的预设动态轨迹:

Φ ( t ) = Φ 0 e − α t + Φ ∞ \Phi(t) = \Phi_0 e^{-\alpha t} + \Phi_\infty Φ(t)=Φ0eαt+Φ

步骤2:误差变换

将误差 e ( t ) e(t) e(t) 转换为标准误差 ξ ( t ) \xi(t) ξ(t),使其遵循性能函数的动态轨迹。定义标准误差 ξ ( t ) \xi(t) ξ(t) 为:

ξ ( t ) = e ( t ) Φ ( t ) \xi(t) = \frac{e(t)}{\Phi(t)} ξ(t)=Φ(t)e(t)

步骤3:设计误差动态方程

通过设计误差动态方程,使得标准误差 ξ ( t ) \xi(t) ξ(t) 满足预设性能要求。一般采用比例-积分-微分(PID)控制器的形式:

u ( t ) = K p ξ ( t ) + K i ∫ 0 t ξ ( τ ) d τ + K d d ξ ( t ) d t u(t) = K_p \xi(t) + K_i \int_0^t \xi(\tau) d\tau + K_d \frac{d\xi(t)}{dt} u(t)=Kpξ(t)+Ki0tξ(τ)dτ+Kddtdξ(t)

其中, K p K_p Kp K i K_i Ki K d K_d Kd 为PID控制器的比例、积分和微分增益,需要根据系统性能要求进行调节。

步骤4:控制器实现

将设计好的控制器应用于实际系统中,实时调整控制输入 u ( t ) u(t) u(t),使系统输出 y ( t ) y(t) y(t) 具有预设的瞬态性能和稳态性能。

示例代码

下面是一个基于PPC的简单控制器设计的Python代码示例:

import numpy as np
import matplotlib.pyplot as plt

# 定义系统的传递函数
def system(y, u):
    dydt = -y + u
    return dydt

# 定义性能函数
def performance_function(t, phi0, alpha, phi_inf):
    return phi0 * np.exp(-alpha * t) + phi_inf

# 定义误差动态方程
def error_dynamics(e, phi, Kp, Ki, Kd, integral_e, prev_e, dt):
    xi = e / phi
    integral_e += xi * dt
    derivative_e = (e - prev_e) / dt
    control = Kp * xi + Ki * integral_e + Kd * derivative_e
    return control, integral_e

# 初始条件和参数
y0 = 0
r = 1
phi0 = 1
alpha = 2
phi_inf = 0
Kp = 1
Ki = 0.5
Kd = 0.1
t = np.linspace(0, 10, 100)
dt = t[1] - t[0]

# 计算性能函数
phi = performance_function(t, phi0, alpha, phi_inf)

# 仿真系统
y = np.zeros_like(t)
y[0] = y0
u = np.zeros_like(t)
integral_e = 0
prev_e = 0

for i in range(1, len(t)):
    e = r - y[i-1]
    u[i], integral_e = error_dynamics(e, phi[i-1], Kp, Ki, Kd, integral_e, prev_e, dt)
    prev_e = e
    y[i] = y[i-1] + system(y[i-1], u[i]) * dt

# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(t, y, label='Output y(t)')
plt.plot(t, phi, label='Performance function $\Phi$(t)')
plt.xlabel('Time (s)')
plt.ylabel('Output')
plt.title('Preset Performance Control (PPC)')
plt.legend()
plt.grid(True)
plt.show()

代码说明

  1. 定义系统的传递函数:系统的动态方程定义为一阶微分方程。
  2. 定义性能函数:性能函数 Φ ( t ) \Phi(t) Φ(t) 描述了系统的预期动态性能。
  3. 定义误差动态方程:通过PID控制器设计误差动态方程。
  4. 仿真系统:使用odeint函数仿真系统的输出。
  5. 绘制结果:使用Matplotlib绘制系统输出和性能函数。

结论

预设性能控制(PPC)是一种强大的控制方法,通过设计性能函数和误差动态方程,确保控制系统具有预期的瞬态性能和稳态性能。PPC方法能够有效地降低系统对扰动的敏感性,提高系统的鲁棒性和稳定性。在实际应用中,PPC方法可以结合其他先进控制策略,进一步提升控制系统的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值