自动控制——遇限削弱积分PID控制

遇限削弱积分PID控制

在自动控制领域,PID控制器因其简单高效的特点被广泛应用。然而,在某些应用场合中,传统PID控制器可能会出现积分饱和问题,导致系统性能下降。为了克服这一问题,提出了遇限削弱积分PID控制算法。该算法在控制量进入饱和区时,削弱或停止积分项的计算,从而避免控制量长时间停留在饱和区,提高系统的稳定性和响应速度。

遇限削弱积分PID控制理论

遇限削弱积分PID控制算法的基本思想是,当控制量进入饱和区时,停止或削弱积分项的运算,从而避免控制量长时间停留在饱和区。其控制律如下:

标准PID控制器

标准PID控制器的控制律为:

u ( t ) = K p e ( t ) + K i ∫ e ( t )   d t + K d d e ( t ) d t u(t) = K_p e(t) + K_i \int e(t) \, dt + K_d \frac{d e(t)}{dt} u(t)=Kpe(t)+Kie(t)dt+Kddtde(t)

其中:

  • u ( t ) u(t) u(t)是控制输入
  • e ( t ) e(t) e(t)是误差信号
  • K p K_p Kp是比例增益
  • K i K_i Ki是积分增益
  • K d K_d Kd是微分增益

遇限削弱积分PID控制器

遇限削弱积分PID控制器在标准PID控制器的基础上,对积分项进行了改进。其控制律为:

u ( t ) = K p e ( t ) + K i ∑ i = 0 t α ( u ( i − 1 ) ) e ( i )   d t + K d d e ( t ) d t u(t) = K_p e(t) + K_i \sum_{i=0}^{t} \alpha(u(i-1)) e(i) \, dt + K_d \frac{d e(t)}{dt} u(t)=Kpe(t)+Kii=0tα(u(i1))e(i)dt+Kddtde(t)

其中, α ( u ( i − 1 ) ) \alpha(u(i-1)) α(u(i1))是一个与控制量 u ( i − 1 ) u(i-1) u(i1)有关的调节因子,用于判断是否削弱积分项。定义调节因子如下:

α ( u ( i − 1 ) ) = { 1 , if  ∣ u ( i − 1 ) ∣ < u max 0 , if  ∣ u ( i − 1 ) ∣ ≥ u max \alpha(u(i-1)) = \begin{cases} 1, & \text{if } |u(i-1)| < u_{\text{max}} \\ 0, & \text{if } |u(i-1)| \geq u_{\text{max}} \end{cases} α(u(i1))={1,0,if u(i1)<umaxif u(i1)umax

其中, u max u_{\text{max}} umax是控制量的饱和值。

公式推导

遇限削弱积分PID控制器的控制律可以通过以下步骤推导得到:

  1. 定义误差信号:

e ( t ) = r ( t ) − y ( t ) e(t) = r(t) - y(t) e(t)=r(t)y(t)

其中, r ( t ) r(t) r(t)是期望输出, y ( t ) y(t) y(t)是实际输出。

  1. 计算比例项:

P ( t ) = K p e ( t ) P(t) = K_p e(t) P(t)=Kpe(t)

  1. 计算积分项(遇限削弱):

I ( t ) = K i ∑ i = 0 t α ( u ( i − 1 ) ) e ( i )   d t I(t) = K_i \sum_{i=0}^{t} \alpha(u(i-1)) e(i) \, dt I(t)=Kii=0tα(u(i1))e(i)dt

  1. 计算微分项:

D ( t ) = K d d e ( t ) d t D(t) = K_d \frac{d e(t)}{dt} D(t)=Kddtde(t)

  1. 综合控制律:

u ( t ) = P ( t ) + I ( t ) + D ( t ) u(t) = P(t) + I(t) + D(t) u(t)=P(t)+I(t)+D(t)

Python代码示例

下面是一个实现遇限削弱积分PID控制器的Python代码示例。假设我们有一个简单的温度控制系统,通过遇限削弱积分PID控制器保持系统温度在期望值。

import numpy as np
import matplotlib.pyplot as plt

# 定义系统参数
dt = 0.1  # 时间步长
t = np.arange(0, 10, dt)  # 时间数组
n = len(t)

# 初始化状态变量
temperature = np.zeros(n)  # 系统温度
desired_temperature = np.ones(n) * 50  # 期望温度
external_disturbance = np.sin(t) * 10  # 外界扰动

# 控制器参数
Kp = 2.0  # 比例增益
Ki = 1.0  # 积分增益
Kd = 0.5  # 微分增益
u_max = 10.0  # 控制量的饱和值

# 初始化误差变量
e_prev = 0  # 上一时刻的误差
integral = 0  # 误差积分

# 定义调节因子
def alpha(u_prev):
    return 1 if abs(u_prev) < u_max else 0

# 模拟系统
for i in range(1, n):
    # 计算误差
    e = desired_temperature[i] - temperature[i-1]
    
    # 误差积分(遇限削弱积分)
    integral += alpha(temperature[i-1]) * e * dt
    
    # 误差微分
    derivative = (e - e_prev) / dt
    
    # 遇限削弱积分PID控制器
    u = Kp * e + Ki * integral + Kd * derivative
    
    # 控制量饱和处理
    if u > u_max:
        u = u_max
    elif u < -u_max:
        u = -u_max
    
    # 更新系统温度
    temperature[i] = temperature[i-1] + (u + external_disturbance[i]) * dt
    
    # 更新上一时刻的误差
    e_prev = e

# 绘制结果
plt.figure(figsize=(10, 4))
plt.plot(t, desired_temperature, label='Desired Temperature')
plt.plot(t, temperature, label='Actual Temperature')
plt.plot(t, external_disturbance, label='External Disturbance')
plt.xlabel('Time [s]')
plt.ylabel('Temperature')
plt.legend()
plt.title('Anti-windup PID Control for Temperature System')
plt.grid(True)
plt.show()

在这里插入图片描述

代码解释

  1. 系统参数和时间数组:定义了时间步长 dt 和时间数组 t,用来模拟系统在一段时间内的行为。
  2. 状态变量初始化:初始化了系统温度 temperature、期望温度 desired_temperature 和外界扰动 external_disturbance
  3. 控制器参数:定义了遇限削弱积分PID控制器的比例增益 Kp、积分增益 Ki、微分增益 Kd 和控制量的饱和值 u_max
  4. 误差变量初始化:初始化了上一时刻的误差 e_prev 和误差积分 integral
  5. 调节因子函数:定义了调节因子函数 alpha(u_prev),用于判断是否削弱积分项。
  6. 系统模拟:通过迭代计算,在每个时间步长内根据遇限削弱积分PID控制律计算控制输入,并更新系统温度。
  7. 结果绘制:使用 matplotlib 绘制系统温度、期望温度和外界扰动的变化曲线。

结论

遇限削弱积分PID控制器在传统PID控制器的基础上,通过判断控制量是否进入饱和区,削弱或停止积分项的计算,从而避免控制量长时间停留在饱和区,提高了系统的稳定性和响应速度。在实际应用中,遇限削弱积分PID控制器适用于具有大扰动和参数不确定性的系统,能够实现更精确的控制效果。结合Python代码示例,可以更直观地理解遇限削弱积分PID控制器的基本原理和实现方法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值