迟来的腾讯 HunYuan-T1 效果实测

迟来的腾讯 HunYuan-T1 效果实测

原创 刘聪NLP NLP工作站 2025年03月24日 22:22 江苏

上周一开始看腾讯混元发了个x,以为HunYuan-T1要开源。结果是新模型产品上新。

特点:首个超大Hybrid MamBa模型,推理速度快,效果(Benchmark上)不错。

本来是周五晚上23点的发布会,当时只顾着看Qwen3的Moe代码来着,没注意。给大家带来一份迟来的测试。

太长不爱看版本:

  • 快,确实很快,体感很舒服;

  • API价格是便宜的,输入28K,输出64K,但是我在网页版测试时,有些问题回答会截断;

  • 弱智吧问题回答的都很好,不知道是不是专门优化过;

  • R1满血测试题没回答对,大数计算同样也不行;

  • 代码生成SVG这一块,细碎,Claude还是SVG的神;

  • 文采一般,我个人不是十分满意。

下面开始测试用例:

  • 将“I love HunYun-T1”这句话的所有字母反过来写

    图片

    说明:回答的很不错

  • 依旧弱智吧

  • 生蚝煮熟了叫什么?

    图片

    说明:回答的我是太满意了

  • 用水来兑水,得到的是浓水还是稀水

    图片

    说明:回答的我是太满意了,PS还有其他很多弱智吧的例子,回答的都很好,就没贴了。

  • 依旧小红、依旧老鹰

  • 小红有2个兄弟,3个姐妹,那么小红的兄弟有几个姐妹

    图片

    说明:对了,别跟我battle了,小红就是女生,狗头!

  • 未来的某天,李同学在实验室制作超导磁悬浮材料时,意外发现实验室的老鼠在空中飞,分析发现,是因为老鼠不小心吃了磁悬浮材料。第二天,李同学又发现实验室的蛇也在空中飞,分析发现,是因为蛇吃了老鼠。第三天,李同学又发现实验室的老鹰也在空中飞,你认为其原因是

    图片

    说明:没对,老鹰依旧不会飞~

  • 依旧做题

  • 2024年高考全国甲卷数学(理)试题

    图片

    图片

    说明:对了 ,

  • 一个长五点五米的竹竿,能否穿过一扇高四米,宽三米的门?请考虑立体几何

    图片

    说明:对了能穿过

  • R1满血测试题,在平面四边形ABCD中,AB = AC = CD = 1,\angle ADC = 30^{\circ},\angle DAB = 120^{\circ}。将\triangle ACD沿AC翻折至\triangle ACP,其中P为动点。 求二面角A - CP - B的余弦值的最小值。

    图片

    说明:没回答出来,测了五六遍,不知道是最大生成长度超了还是怎么样,反正没返回最终答案。

  • 大数计算:178939247893 * 299281748617等于多少?

    图片

    说明:没对,答案是53553251005627872913981

  • 依旧生物、伦理

  • 有一天,一个女孩参加数学考试只得了 38 分。她心里对父亲的惩罚充满恐惧,于是偷偷把分数改成了 88 分。她的父亲看到试卷后,怒发冲冠,狠狠地给了她一巴掌,怒吼道:“你这 8 怎么一半是绿的一半是红的,你以为我是傻子吗?”女孩被打后,委屈地哭了起来,什么也没说。过了一会儿,父亲突然崩溃了。请问这位父亲为什么过一会崩溃了?

    图片

    说明:对一半,回答出了红绿色盲,但是没回答出不是亲闺女!

  • 依旧SVG代码画图

  • 借鉴江树的case,用黑白手绘风格说明什么是机器学习的本质,用SVG+CSS实现,所有代码放到一个HTML中。

    图片

    说明:太差了,都没有QwQ-32B画的好,还画了几个也不太行。其他代码能力没测试,本人不擅长。

  • 创作

  • 仿照《过秦论》的风格写一篇《过美利坚论》

    图片

    说明:个人感觉写的不太行,内容有点混乱了

  • 用贴吧嘴臭老哥的风格点评大模型套壳现象

    图片

    说明:味道还行,但是为啥大模型套壳就一定是套OpenAI呀,现在是2025年了,哈哈哈,感觉是训练数据的问题,个人不是太满意。

写在最后

虽然T1没开源,不过腾讯最近也是开源了一些模型的,那个HunYun3D-2.0就满有意思的。

希望大模型越来越好吧~

还有最近在思考,如何让自己变得更有趣~大家有什么建议吗?

### 关于 HunYuan 3D Version 2 的文档或使用指南 目前关于腾讯混元系列模型的公开资料主要集中在 HunYuan 3D-1.0 版本上[^1]。然而,对于 HunYuan 3D Version 2 (HunYuan 3D-2),尚未有官方发布的具体文档或详细的使用指南被广泛传播。以下是对可能涉及的内容以及基于现有版本推测的相关信息: #### 已知信息总结 1. **HunYuan 3D-1.0 功能概述** HunYuan 3D-1.0 是一个支持文本到 3D 和图像到 3D 生成功能的强大生成模型[^2]。它通过统一化的框架设计,在较短的时间内能够生成高质量的 3D 资产。 2. **技术背景与成本考量** 使用大规模模型进行三维生成的技术路线通常伴随着较高的计算资源需求。无论是神经辐射场 (NeRF) 还是其他形式的 3D 场景表示方法,这些模型都被认为是在当前领域中较为昂贵的选择之一[^3]。 3. **代码细节补充** 在一些具体的实现过程中,例如从文本到视频 (T2V) 或者图像到视频 (I2V) 的转换任务中,涉及到的关键参数如 `in_chans` 表明了输入数据结构的设计特点[^4]。这可能是未来版本进一步优化的方向之一。 #### 对 HunYuan 3D-2 的假设分析 尽管缺乏直接针对 HunYuan 3D-2 的描述性材料,可以合理猜测其改进方向如下: - 提升效率:减少运行时间和硬件消耗的同时保持甚至提高输出质量。 - 增强功能:扩展至更多模态间的转化能力,比如语音转 3D 形象等新型应用场景。 - 用户友好度增加:提供更简便易用的 API 接口和服务端解决方案以便开发者快速集成到自己的产品当中去。 由于上述内容均为推断性质的结果,并未得到实际验证,请密切关注腾讯官方团队后续发布的新消息来获取最权威准确的信息源。 ```python # 示例代码片段展示如何加载预训练权重文件(仅作示意用途) import torch from transformers import AutoModelForVisionTo3DGeneration, AutoFeatureExtractor model_name_or_path = "path/to/hunyuan_3d_v2" feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path) model = AutoModelForVisionTo3DGeneration.from_pretrained(model_name_or_path) image_input = feature_extractor(images=example_image, return_tensors="pt").pixel_values outputs = model(image_input) predicted_3d_model = outputs.reconstructed_3d_object ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值