转化关系模型外键_私域流量运营的四个模型!

a70099e1e274d4e29720254f2e5b0567.png

从“公域+私域”的各种组合,到新玩法的不断涌现,再到用户生命周期管理,这些最终都要汇总到运营模型中来。

私域流量当下的运营模型是怎样的?如何构成和解读?有哪些核心阶段和组成部分?这些模型的适用性如何?和过往运营模型相比,从流量和人的角度出发,最大的不同是什么?

私域流量运营的四个模型

1、蝴蝶结模型(AARRR运营模型)

e52132bd8482d24064f74ad8bb462317.png

蝴蝶结模型(AARRR运营模型)可以从推广获客、成交、转化、客户留存、复购增购、分享裂变5个流程帮助商家从公域流量中挖掘新增流量,建立自己的“私域流量池”。

该AARRR运营模型是蝴蝶型的——商家通过多渠道获取顾客,然后逐渐留存下忠实顾客,这是“从大到小”的过程;此后,商家再通过复购增购、社交裂变,让已有顾客发挥出最大价值,并带来更多新顾客,这是一个“从小到大”的过程。在这条路径试验成功后,在复制和扩大到新的目标市场。

商家付出营销成本获取新客户后,需要把用户群沉淀到自身的私域矩阵中,这个矩阵可以是公众号、社群、小程序等,在这里打造品牌,打造个人IP。私域流量一定是可触达、可运营,甚至是可连接的,通过“复购增购”、“分享裂变”,品牌商、零售商可以做更深度的会员复购、以及老客拉新,这样才是良性的私域流量池。

2、基于企业微信的客户运营模型

f1c2df1a980da4e8e595fa27e5ae264b.png

企业微信是天生的SCRM(社会关系管理),相比其他CRM(客户关系管理),企业微信是唯一可以直接连接客户微信的平台,不但可以1V1,一对多直接发消息给客户微信和微信群,还能通过企业微信发朋友圈这种不打扰客户的方法,来对客户进行信息传递,达到转化和服务的目的。其次:把客户微信加到企业微信好友,那么客户就变成了企业在线化的资产,不会因为人员流失而导致客户流失,新员工可以继承前员工的所有连接和服务记录信息。

3、闭环营销模型

dc1918dd9b49ce6397544fd23b38791d.png

今天,消费者与品牌沟通的渠道越来越多样化,人均通过5-6个触点与品牌接触,其中一半以上的触点的社交触点。与此同时,销售渠道越来越模糊化,品牌可以通过公众号、小程序、社群、一对一聊天工具等,与消费者进行直接对话,将营销与销售合一。小品牌借助社交媒体兴起,通过去中心化的传播途径,层出不穷的传播机制,引发消费者主动裂变。

消费者行为变化,环境的变化,要求品牌转变自己的营销模型:如从侧重粉丝增量,到侧重粉丝存量精细化运营,到存量激发增量;从聚焦消费者完成转化的渠道,到聚焦消费者全链路触点;从品牌产品导向的内容宣传,到以知识和观点为核心内容;从公域流量运营,到创造私域流量,到消费者全生命周期价值运营;从各生态割裂运营,到整合各生态用户数据能力,到全域布局与营销。在营销模型发生变化的同时,运营思维也要随之转变,如从流量思维到流量池思维;从获课思维到增长思维;从粗放化到精细化;从经营商品到经营用户。

4、客户与数据、触达、粘性兼得模型

对于传统企业经营而言,通常呈现的模式为:有客户、无数据;有客户、无触达;有客户、无粘性;而通过品牌对私域流量的运营,协助企业达成客户与数据、触达、粘性三方面兼得的优势局面。

有客户,有触达:“把随缘的服务,变成随时的服务”。

通过大量数字化导购等方式,随时随地主动触达用户——利用微信、导购商城、群运营推送信息,以实现品牌对消费者的连接,从而最大程度地拉动利润率增长。

有客户,有数据:“沉淀拥有,动态使用”。

通过优化投放成本,促进公众号、小程序加粉,从而为私域持续蓄水,继而复用私域数据,实现小程序数据积累;再到利用腾讯有数、广告引擎联动建模,数据赋能广告。

有客户,有粘性:“让沟通,从无意义到有温度”。

基于微信生态平台,通过签到福利、贴心早报、个性直播等方式实现与消费者的良性互动,为消费者提供有价值的服务内容,一改传统方式到达率低下的现状,从而提升客户的忠诚度和复购率。

想要做好私域流量的运营,必须要了解私域流量的运营模型,摸清私域流量的运营模式,才能更好地提升转化率,获得利益增长。

### 将蝴蝶结模型映射到贝叶斯网络 #### 定义和背景 蝴蝶结模型是一种特定结构的概率图形模型,常用于表示某些类型的因果关系或依赖关系。该模型的特点是在中心节点处形成两个分支路径,形似蝴蝶结。而贝叶斯网络则是一类广泛使用的概率图模型,能够表达变量间的条件独立性和依赖性。 #### 映射过程 要将蝴蝶结模型转换成贝叶斯网络,需遵循以下原则: 1. **识别核心组件** - 确定蝴蝶结模型中的主要节点及其连接方式。 - 中心节点通常是引起其他所有节点变化的关因素[^1]。 2. **构建有向无环图(DAG)** - 使用DAG来代表贝叶斯网络,其中每个节点对应于随机变量,边指示父节点对子节点的影响方向。 - 对应于蝴蝶结模型的中央节点应当作为根节点放置在网络顶部,并向下分叉创建两条不同的路径,每条路径上的节点依次相连直至末端。 3. **定义局部概率分布** - 为每一个非根节点指定其给定父母条件下发生的先验概率表(CPT),即`P(X|Parents(X))`。 - 这些CPTs反映了各个节点之间具体的统计关联程度,对于初始状态下的参数估计可以采用最大似然法或其他合适的方法进行初始化。 4. **调整边缘化与推理机制** - 当完成基本框架搭建之后,还需要考虑如何有效地执行查询操作——比如计算某个事件的发生几率或是寻找最可能的原因组合等问题。 - 利用现有的高效算法如信念传播(Belief Propagation)来进行精确或近似的推断分析。 ```python import numpy as np from pgmpy.models import BayesianModel from pgmpy.factors.discrete import TabularCPD # 创建一个简单的蝴蝶结形状的贝叶斯网络实例 model = BayesianModel([ ('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'F'), ('C', 'G') ]) # 添加条件概率分布 (假设二元离散变量) cpd_a = TabularCPD(variable='A', variable_card=2, values=[[0.5], [0.5]]) cpd_b = TabularCPD(variable='B', variable_card=2, evidence=['A'], evidence_card=[2], values=[[0.9, 0.1], [0.1, 0.9]]) cpd_c = TabularCPD(variable='C', variable_card=2, evidence=['A'], evidence_card=[2], values=[[0.8, 0.2], [0.2, 0.8]]) # 继续添加其余节点... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值