私域流量运营之增长运营:用户运营实战与行为数据洞察,私域流量运营者必修课!...

siyuzengzhangyunying

一、首先要解释两个概念:

1.私域流量运营:这个概念,最早起源于淘宝,即基于私域流量运营方法。私域的定义是:品牌或个人自主拥有的、可以自由控制、免费的、多次利用的流量。

私域通常的呈现形式是个人微信号、微信公众号、微信群、小程序或自主APP,它们的特性是具有一定封闭空间。

微信生态里可以承载用户的几种形式,私域矩阵化是未来趋势:

3

2.增长运营:增长运营即用户运营,围绕用户核心数据指标的增长性运营;

所以私域流量运营和增长运营,本质是一回事情,前者定义用户类型,后者定义用户运营方法论。

二、什么是增长运营(用户运营or私域用户运营)?

1

“用户运营”顾名思义围绕用户的全LTV的运营动作、策略都可以称之为用户运营:

有些人觉得做活动、做社群是用户运营该做的;

有些人觉得做用户体系、转化、数据监控是用户运营该做的;

还有些人把渠道投放运营也放到用户运营中。其实我认为这些都可以称之为用户运营,因为这些工作都会影响用户的整个LTV周期。那么成为一位用户运营需要具备哪些能力与素养?

三、用户从哪里来?

1. 渠道投放职能划分

用户进入平台店铺、web、app的形式分为三种:订单用户、付费用户、免费用户,通常会在web、app以及一些流量分发平台开放用户的导流入口,根据职能划分可以大致分为:私域运营、SEO、SEM、ASO、ASM、DSP(信息流)这五种渠道运营职能。

2. 付费渠道的结算方式

通常SEM、DSP在进行投放时的结算策略可以大致分为:CPC、CPA、CPM、CPD等结算方式。其中CPS、CPA对买方有利,CPC、CPM对卖方有利。

3. 资源对接

像股票交易平台一样,不同的买方与卖方也会通过中间商来进行资源的对接。电商平台或线下门店,用户通过订单系统进入用户系统,而广告获客,则通过Ad Exchange联系的是广告交易的买方(广告主-即投放广告的,如我们的App)和卖方(SSP的流量广告位拥有方,如爱奇艺)。

通过以上几种方式,用户就已经来到了我们的产品中。

3-4.jpg

(私域流量汇聚过程)

四、私域增长运营的产品建设

1. 用户分层&用户标签体系化建设

备注:无论订单用户、付费用户还是免费用户,整个客户运营的逻辑相似,所以我们也不特意去区分订单用户的运营方式。

用户标签是用户运营策略中非常依赖的一项前提条件,如果能对用户的某些行为进行自动打用户标签那么就可以对后面垂直的精细化运营做出良好的铺垫。

第一类标签可以采用公司最看重的业务类型来对用户分层,比如 电商公司的利润、直播公司的用户充值金额、交易型公司的手续费等。如果再进行下一步的拆分,可以是交易金额、利润、充值金额等维度。

第二类标签可以采用用户属性来对用户进行分层,比如用户的年龄、职业、性别等等

第三类标签可以采用用户在Web、App中的行为,比如 用户的浏览、查看、注册、下单、支付、复购等。但此项对于产品的埋点、数据、后台支持要求较高。

像还有更多的用户标签体系玩法,比如用户的LTV全生命周期打标签、RFM模型对用户进行打标签都是比较流行的传统互联网运营玩法。

那有了用户标签以后该怎么用起来呢,会在下面的运营策略中重点讲解。

2

(用户分层&用户标签体系化建设)

2. 产品反馈机制

建立“不感兴趣”功能,目前很多产品经理在做页面的时候缺乏和用户良好的沟通,导致不清楚用户的喜好。所以在产品侧开一个用户建议投诉箱、不感兴趣功能就显得至关重要。

3. 用户激励体系&用户成长体系

这是个老生常谈的话题,很长一段时间App如果没有这东西都不敢称之为是做App的,那其实这种用户成长体系是分为不同类型的产品应该做成不同样子的。

比如高频产品 墨迹天气这种的创收行为主要集中在广告展示,那么用户的高频登陆来获取积分、等级、经验值就显得至关重要。

再比如中频产品 淘宝、天猫这种的创收行为主要集中在ARPU(AverageRevenuePerUser),那么体系中应该重点偏向注册-浏览-下单-复购这一条路线。

再比如低频产品去哪、携程这种,要在电商类产品基础上增加内容论坛的活跃度等指标来增加用户粘性。

例:

3

(简单列举几个积分的获取方式)

4. 优惠券、会员机制

这些常见于电商类、交易类产品中,比如 天猫、携程等产品类型。作为用户运营提高平台用户客单价的利器,优惠券是运营一定需要掌握的必备技能。就好比是程咬金的“三板斧”,哪类用户用低面额优惠券、哪类用户用高面值、哪类用户用长期限优惠券、哪类用户用短期限优惠券、哪类用户用全品类、哪类用户用垂直品类优惠券。

这些可以单独写一篇文章,在此处不做详细介绍了。

4

(优惠券)

五、私域增长运营策略

1. 分级运营

在有了用户标签体系后,应当建立不同用户的运营策略库。

  • 短中长期的流失用户该进行哪些策略的召回。
  • 在用户的平均LTV流失时间点的时候,应该对用户进行哪些策略。这些都是可以实现常规、标准化的打法。
  • 渠道投放假量验证

当我们在渠道中进行投放时,经常会受到渠道放刷量、用户刷量的困扰。那么我们可以运用用户标签体系对一些真实用户的共性行为进行打标签,以此区分“真实用户”与“假量用户”

  • 新注册用户的体验转化

有些用户从来没有使用过产品的某些功能,那么可以针对此类用户有针对性的实施运营侧录了,比如:PUSH,推送,站内信,跳转,小图标引导,banner展示可以定向化的指定用户运营,让用户在产品内流动起来。

2. 用户运营常用模型

  • 用户流失预警模型

该模型可以前期采用运营定区间,监测效果。后期再送到产品研发来实现自动化的报警、运营策略、触达等全流程落地。

然后,将这些指标作为流失用户模型的指标,它们的权重分别要已流用户占比做调整,模型要根据行为数据的不断变化去迭代,从而尽可能的预测到某一类用户快要流失了,我们要采取相应措施去挽留他们了。根据挽留的效果,我们又可以把相关流失用户的挽留措施、挽留效果加入流失用户模型中,以尽可能的形成『预测-挽留措施』的自动化预警。

  • RFM模型

RFM模型最早常见于互联网电商行业,该模型重落地后的优化,我曾在监控用户分层流动、定点运营策略中经常使用RFM模型,是我比较喜欢用的一个模型。前期可以运营内部先凭经验搭配出一版区间值,后期R、F、M的数字维度确定后 再提交给产品经理、研发同事形成自动化的数据导出。

6

(RFM模型)

  • SPSS预测模型

此类模型常用于电商行业的运营,如:Kohonen神经网络模型、线性回归方程预测,通常用于预测下个月的DAU、GMV等数值,如果有异常,那么运营可以及时切入进去分析数据、制定运营策略。

  • SKU价格聚类

此类模型常用于将用户按照不同的贡献价值区间对用户进行分层,或者以SKU为单位对商品进行分层。

  • 关联预测模型

此类模型常用于将一些对用户创收动作有价值的动作挖掘出来,比如用户对商品进行了收藏、加购物车的动作是对下单等创收目标动作的强关联,还可以进一步计算出这些动作所占有的权重指数。

以上模型在这里不做详细展开,后续会单独出一篇数据分析的文章。

3. 常见触达方式

  1. 站内信:需要开发,但对用户运营来说性价比最高。可以分类对用户进行运营。
  2. 短信:需要成本,属于短期过度型、召回、特大活动营销时常用的方式。
  3. 邮件:国外较为常用,国内用户对邮件的使用率较低,不建议使用。
  4. Push:在友盟、个推等第三方平台嵌入SDK以后,即可进行对全量用户的push
  5. 电话:需要成本,通常在对平台头部创收用户的定向维护、营销、召回时才会使用。
  6. AB 测试

7

(AB在召回策略中的用法)

在Growthhacker中最常用的手段莫过于此,所有世间万物都离不开迭代。那么擅长使用AB、归纳、复盘、总结的运营人在长远来看一定是能产生成效的。

推荐一些新手用户运营的教科书

  1. 《运营之光1.0、2.0》
  2. 《增长黑客实战》
  3. 《引爆用户增长》
  4. 《数据挖掘与数据化运营实战》

感谢阅读~(完)作者:程瀚  在此表示感谢!

··················

电商宝SCRM/个人号管家软件官网,多微信号管理,推荐电商宝个人号管家!电商宝SCRM平台官网:http://scrm.ecbao.cn

相关阅读:

1.如何用好售后服务卡/评价有礼卡,高比率留存老客户,提升店铺复购率

2.微商社群电商客服工作效率提升百倍,电脑端实现微信轻松发语音,1人服务百人千人!

3.电商卖家如何从根本上解决流量问题——自建流量池,私域流量池的趋势!

4.微信运营技巧:添加微信好友被拒失败,看了这19个验证话术,通过率达99%

5.商家自建流量池:10种微信引流的方法,值得学习社群营销的商家收藏 !

6.电商社群运营KPI运营绩效考核方案,附:社群管理绩效考核表!

预测游戏玩家的LTV(生命周期价值)是游戏运营中非常重要的一项工作,因为它能够帮助我们预测玩家在未来的付费情况。通常,我们可以采用以下步骤来建立一个游戏LTV预测模型: 1. 收集数据:我们需要收集玩家的行为数据,包括游戏时长、充值金额、游戏内道具购买情况等等。 2. 数据处理:对收集到的数据进行清洗和处理,例如去除异常值、缺失值等。 3. 特征工程:将处理后的数据转换为可用于建模的特征,例如玩家的游戏天数、平均每天游戏时长、最近一次充值时间等等。 4. 模型训练:选择一个适合的机器学习算法,并使用历史数据对模型进行训练。 5. 模型评估:使用评估指标(例如R2、MAE等)对模型进行评估,以确保模型的准确性和可靠性。 6. 预测:使用训练好的模型对新的数据进行预测,例如预测玩家的LTV。 下面是一个简单的实例,使用Python语言和Scikit-learn库来预测玩家的LTV: ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score # 读取数据 data = pd.read_csv('player_data.csv') # 特征工程 features = ['game_days', 'game_time', 'recharge_amount', 'last_recharge_time'] X = data[features] y = data['ltv'] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 模型训练 model = LinearRegression() model.fit(X_train, y_train) # 模型评估 y_pred = model.predict(X_test) r2 = r2_score(y_test, y_pred) print('R2 score: %.2f' % r2) # 预测玩家的LTV new_data = pd.DataFrame([[30, 60, 100, 7]], columns=features) ltv_pred = model.predict(new_data) print('Predicted LTV: %.2f' % ltv_pred) ``` 这个示例代码使用线性回归算法来训练模型,并使用R2评估指标对模型进行评估。最后,使用训练好的模型对新的数据进行预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值