晓查 编译整理
量子位 报道 | 公众号 QbitAI
NumPy是Python的最重要的扩展程序库之一,也是入门机器学习编程的必备工具。然而对初学者来说,NumPy的大量运算方法非常难记。
最近,国外有位程序员讲NumPy的基本运算以图解的方式写下来,让学习过程变得轻松有趣。在Reddit机器学习社区发布不到半天就收获了500+赞。
下面就让我们跟随他的教程一起来学习吧!
教程内容分为向量 (一维数组)、矩阵 (二维数组)、三维与更高维数组3个部分。
Numpy数组与Python列表
在介绍正式内容之前,先让我们先来了解一下Numpy数组与Python列表的区别。
乍一看,NumPy数组类似于Python列表。它们都可以用作容器,具有获取(getting)和设置(setting)元素以及插入和移除元素的功能。
两者有很多相似之处,以下是二者在运算时的一个示例:
和Python列表相比,Numpy数组具有以下特点:
更紧凑,尤其是在一维以上的维度;向量化操作时比Python列表快,但在末尾添加元素比Python列表慢。
△在末尾添加元素时,Python列表复杂度为O(1),NumPy复杂度为O(N)
向量运算
向量初始化
创建NumPy数组的一种方法是从Python列表直接转换,数组元素的类型与列表元素类型相同。
NumPy数组无法像Python列表那样加长,因为在数组末尾没有保留空间。
因此,常见的做法是定义一个Python列表,对它进行操作,然后再转换为NumPy数组,或者用np.zeros和np.empty初始化数组,预分配必要的空间:
有时我们需要创建一个空数组,大小和元素类型与现有数组相同:
实际上,所有用常量填充创建的数组的函数都有一个_like对应项,来创建相同类型的常数数组:
在NumPy中,可以用arange或者linspace来初始化单调序列数组:
如果需要类似[0., 1., 2.]的浮点数组,可以更改arange输出的类型:arange(3).astype(float)。
但是有更好的方法:arange函数对数据类型敏感,如果将整数作为参数,生成整数数组;如果输入浮点数(例如arange(3.)),则生成浮点数组。
但是arange在处理浮点数方面并不是特别擅长:
这是因为0.1对于我们来说是一个有限的十进制数,但对计算机而言却不是。在二进制下,0.1是一个无穷小数,必须在某处截断。
这就是为什么将小数部分加到步骤arange通常是一个不太好的方法:我们可能会遇到一个bug,导致数组的元素个数不是我们想要的数,这会降低代码的可读性和可维护性。
这时候,linspace会派上用场。它不受舍入错误的影响,并始终生成要求的元素数。
出于测试目的,通常需要生成随机数组,NumPy提供随机整数、均匀分布、正态分布等几种随机数形式: