从零开始学数据分析之——《微积分》第五章 定积分

5.1  定积分的概念与性质

5.1.1 定积分问题举例

1.曲边梯形的面积

2.变速直线运动的路程

5.1.2 定积分的概念

定积分的定义

设函数f(x)在区间[a,b]上有定义,在[a,b]内任意插入n-1个分点

a=x_{0} < x_{1} < x_{2} < \cdot \cdot \cdot < x_{n-1} < x_{n} = b 

将区间[a,b]分成n个小区间

\left [ x_{0},x_{1} \right ],\left [ x_{1},x_{2} \right ],\cdot \cdot \cdot ,\left [ x_{I-1},x_{i} \right ],\cdot \cdot \cdot ,\left [ x_{n-1},x_{n} \right ],

各个小区间的长度

\Delta x_{1}=x_{1}-x_{0},\Delta x_{2}=x_{2}-x_{1},\cdot \cdot \cdot ,\Delta x_{i}=x_{i}-x_{I-1},\cdot \cdot \cdot ,\Delta x_{n}=x_{n}-x_{n-1} 在每一个小区间\left [ x_{I-1},x_{i} \right ] 上任取一点\xi _{i} ,作函数值f\left ( \xi _{i} \right ) 与该小区间长度\Delta x_{i} 的乘积f\left ( \xi _{i} \right )\Delta x_{i}\left ( i=1,2,\cdot \cdot \cdot ,n \right ), 并作和

S=\sum_{i=1}^{n}f\left ( \xi _{i} \right )\Delta x_{i}    (1)

\Delta x=max\left \{ \Delta x_{1}, \Delta x_{2},\cdot \cdot \cdot , \Delta x_{n}, \right \}, 若当\Delta x\rightarrow 0 时,S的极限存在,且次极限值与区间[a,b]的分法以及点\xi _{i}的取法无关,则称函数f(x)在[a,b]上可积,并称此极限值为函数f(x)在[a,b]上的定积分,记作\int_{a}^{b}f\left ( x \right )dx, 即

\int_{a}^{b}f\left ( x \right )dx=\lim_{\Delta x\rightarrow 0}\sum_{I=1}^{n}f\left ( \xi _{i} \right )\Delta x_{i}

其中,f(x)称为被积函数,f(x)dx称为被积表达式,x称为积分变量,[a,b]称为积分区间,a称为积分下限,b称为积分上限,而式(1)的S称为f(x)的一个积分和。

5.1.3 定积分的基本性质

(1)当a=b时,\int_{a}^{b}f\left ( x \right )dx=0

(2)当a>0时,\int_{a}^{b}f\left ( x \right )dx=-\int_{b}^{a}f\left ( x \right )dx

性质1:      \int_{a}^{b}kf\left ( x \right )dx=k\int_{a}^{b}f\left ( x \right )dx  (k为常数)

性质2:     \int_{a}^{b}\left [ f\left ( x \right )\pm g\left ( x \right ) \right ]=\int_{a}^{b}f\left ( x \right )dx\pm \int_{a}^{b}g\left ( x \right )dx

性质3:    设a<b<c,则

               \int_{a}^{b}f\left ( x \right )dx=\int_{a}^{c}f\left ( x \right )dx+\int_{c}^{b}f\left ( x \right )dx

性质4:    若f\left ( x \right )\leqslant g\left ( x \right ),x\in \left [ a,b \right ], 则

               \int_{a}^{b}f\left ( x \right )dx\leqslant \int_{a}^{b}g\left ( x \right )dx

性质5:   若f\left ( x \right )\equiv 1,x\epsilon \left [ a,b \right ],

              \int_{a}^{b}f\left ( x \right )dx= b-a

性质6:   设M与m分别为函数f(x)在区间[a,b]上的最大值与最小值,则

               m\left ( b-a \right )\leqslant \int_{a}^{b}f\left ( x \right )dx\leqslant M\left ( b-a \right )

性质7:  (积分中值定理)若函数f(x)在区间[a,b]上连续,则至少存在一点\xi \in \left [ a,b \right ],使

              \int_{a}^{b}f\left ( x \right )dx=f\left ( \xi \right )\left ( b-a \right )

5.2  微积分基本定理 

5.2.1 积分上限函数

设函数f(x)在[a,b]上可积,x为区间[a,b]上的任意一点,函数f(x)在[a,x]上也可积,则定积分\int_{a}^{x}f\left ( t \right )dt 就是定义在区间[a,b]上的积分上限x的函数,称为积分上限函数,记作P(x),即

P\left ( x \right )=\int_{a}^{x}f\left ( t \right )dt,x\in \left [ a,b \right ].

定理5.2.1 如果函数f(x)在区间[a,b]上连续,则函数

P\left ( x \right )=\int_{a}^{x}f\left ( t \right )dt,x\in \left [ a,b \right ].

在区间[a,b]上可导,并且

P'\left ( x \right )=f\left ( x \right ) x\in \left [ a,b \right ]

5.2.2 牛顿——莱布尼兹公式

微积分基本定理  设函数f(x)在[a,b]上连续,F(x)是f(x)的一个原函数,则

\int_{a}^{b}f\left ( x \right )dx=F\left ( b \right )-F\left ( a \right ).    (3)

式(3)叫做牛顿——莱布尼兹公式,也被称为微积分基本公式。

5.3  定积分的换元积分法与分部积分法 

5.3.1  定积分的换元积分法

定理5.3.1 设函数f(x)在[a,b]上连续,若函数x=\varphi \left ( t \right ) 满足

(1)当\alpha \leqslant t\leqslant \beta时,有\alpha \leqslant x=\varphi \left ( t \right )\leqslant b,且\varphi \left ( \alpha \right )=a,\varphi \left ( \beta \right )=b

(2)\varphi \left ( t \right )在闭区间\left [ \alpha ,\beta \right ]上单调且有连续导数\varphi '\left ( t \right ),

\int_{a}^{b}f\left ( x \right )dx=\int_{\alpha }^{\beta }f\left [ \varphi \left ( t \right ) \right ]\varphi '\left ( t \right )dt.    (1)

式(1)称为定积分的换元公式。

5.3.2  定积分的分部积分法

设函数u=u(x), v=v(x)在区间[a,b]上有连续的导函数,则

(uv)' = u'v + uv'

uv' = (uv)' -u'v

从而

\int_{a}^{b}uv'dx=(uv)|_{a}^{b} -\int_{a}^{b}u'dx,

\int_{a}^{b}udv=(uv)|_{a}^{b} -\int_{a}^{b}vdu     (1)

式(1)称为定积分的分部积分公式。

5.4  定积分的应用

5.4.1 平面图形的面积

由任意连续曲线y=f(x),直线x=a,x=b以及x轴围成的图形的面积为

S=\int_{a}^{b}\left | f(x) \right |dx

5.4.2 立体的体积

1.平行截面面积已知的立体的体积

V=\int_{a}^{b}A\left ( x \right )dx,  A(x)为截面面积。

2.旋转体的体积

V_{x}=\pi\int_{a}^{b}f^{2}\left ( x \right )dx,       V_{y}=\pi \int_{c}^{d}\varphi ^{2}\left ( y \right )dy

5.4.3 经济应用问题举例

1.已知边际函数求原函数

2.已知贴现率求现金流量的贴现值

离散型  R=\sum_{I=1}^{n}\frac{R_{i}}{\left ( 1+r \right )^{i}}

连续型 R=\int_{0}^{n}R\left ( t \right )e^{-rt}dt

5.5  广义积分

5.5.1 无穷限积分

1. 无穷限积分的定义

设函数f(x)在区间\left [ a,\infty + \right ) 上有定义,且对任实数b\left ( b> a \right ),f\left ( x \right ) 在[a,b]上可积,称记号\int_{a}^{+\infty }f\left ( x \right )dx为f(x)在区间\left [ a,\infty + \right )上的广义积分,若极限

\lim_{b\rightarrow +\infty }\int_{a}^{b}f(x)dx   (1)

存在,则称广义积分\int_{a}^{+\infty }f\left ( x \right )dx收敛,并把此极限值称为积分\int_{a}^{+\infty }f\left ( x \right )dx的值,即有

\int_{a}^{+\infty }f\left ( x \right )dx=\lim_{b\rightarrow +\infty }\int_{a}^{b}f(x)dx    (2)

若式(1)表示的极限不存在,则称广义积分\int_{a}^{+\infty }f\left ( x \right )dx发散。

2.无穷限积分的性质

性质1        若\int_{a}^{+\infty }f\left ( x \right )dx收敛,则\int_{a}^{+\infty }kf\left ( x \right )dx也收敛,且

                 \int_{a}^{+\infty }kf\left ( x \right )dx=k\int_{a}^{+\infty }f\left ( x \right )dx,

                其中,k为常数。

性质2        若\int_{a}^{+\infty }f\left ( x \right )dx\int_{a}^{+\infty }g\left ( x \right )dx都收敛,则\int_{a}^{+\infty } [f\left ( x \right )\pm g\left ( x \right )]dx也收敛,且

                \int_{a}^{+\infty } [f\left ( x \right )\pm g\left ( x \right )]dx=\int_{a}^{+\infty }f\left ( x \right )dx+\int_{a}^{+\infty }g\left ( x \right )dx

3.无穷限积分收敛的判定

定理5.5.1

f\left ( x \right )\geqslant 0,\int_{a}^{+\infty }f\left ( x \right )dx收敛的充要条件为P\left ( x \right )=\int_{a}^{x }f\left ( t \right )dt 是有界函数。

定理5.5.2

(比较判别法)设0\leqslant f\left ( x \right )\leqslant g\left ( x \right ),则有

(1)当\int_{a}^{+\infty }g\left ( x \right )dx 收敛时,\int_{a}^{+\infty }f\left ( x \right )dx 收敛;

(2)当\int_{a}^{+\infty }f\left ( x \right )dx发散时, \int_{a}^{+\infty }g\left ( x \right )dx发散。

定义5.5.2

\int_{a}^{+\infty }f\left ( x \right )dx收敛,如果\int_{a}^{+\infty }|f\left ( x \right )|dx收敛,则称\int_{a}^{+\infty }f\left ( x \right )dx绝对收敛;如果\int_{a}^{+\infty }|f\left ( x \right )|dx发散,则称\int_{a}^{+\infty }f\left ( x \right )dx条件收敛。

定理5.5.3

绝对收敛的无穷限积分必收敛。

5.5.2 瑕积分

定义5.5.3 设函数f(x)在区间[a,b)的任一闭子区间上可积,且\lim_{x\rightarrow b^{-}}f\left ( x \right )=\infty,称记号\int_{a}^{b }f\left ( x \right )dx 为函数f(x)在[a,b)上的广义积分。取\varepsilon > 0,若极限

                \lim_{\varepsilon \rightarrow 0^{+}}\int_{a}^{b-\varepsilon }f\left ( x \right )dx   (1)

存在,则称广义积分\int_{a}^{b }f\left ( x \right )dx收敛,并把此极限值称为广义积分\int_{a}^{b }f\left ( x \right )dx的值,即有

                \int_{a}^{b }f\left ( x \right )dx=\lim_{\varepsilon \rightarrow 0^{+}}\int_{a}^{b-\varepsilon }f\left ( x \right )dx  (2)

若式(1)表示的极限不存在,则称广义积分\int_{a}^{b }f\left ( x \right )dx发散。

定义5.5.3中的点b称为f(x)的瑕点。一般地,如果函数f(x)在点a的任一邻域内无界,则称a是f(x)的瑕点。

广义积分因被积函数在相应积分区间上无界,故称为无界函数的广义积分,又称为瑕积分。

5.5.3 \Gamma函数和\beta函数

1.\Gamma函数

定义5.5.4 广义积分

                \Gamma \left ( r \right )=\int_{0}^{+\infty }x^{r-1}e^{-x}dx. \left ( r> 0 \right )    

是参变量r的函数,称为\Gamma函数。

\Gamma函数有如下性质:

(1)\Gamma \left ( r+1 \right )=r\Gamma \left ( r \right ) \left ( r> 0 \right )

(2)\Gamma \left ( n+1 \right )=n!   (n为正整数)

2.\beta函数

定义5.5.5 广义积分

                \beta \left ( p,q \right )=\int_{0}^{1}x^{p-1}\left ( 1-x \right )^{q-1}dx \left ( p> 0,q> 0 \right )

是参变量p,q的函数,称为\beta函数。

\beta函数有如下性质:

(1)\beta \left ( p,q \right )=\beta \left ( q,p \right )

(2)\beta \left ( p+1,q+1 \right )=\frac{q}{p+q+1}\beta \left ( p+1,q \right )

(3)\beta \left ( p,q \right )=\frac{\Gamma \left ( p \right )\Gamma \left ( q \right )}{\Gamma \left ( p+q \right )}

                

 

 

 

 

 

 

 

 

 

 

 

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值