nms python代码_faster rcnn two stage(分步)训练方式代码解读

本文详细解读了Faster R-CNN的分步训练流程,包括RPN网络的训练、ROI Proposal生成及Fast R-CNN的训练。通过Python NMS操作减少ROI重叠,并探讨了参数设置、数据集和模型选择。最终模型在PASCAL VOC 2007上的mAP值为0.2785。
摘要由CSDN通过智能技术生成

55f6e4f61ef54a2e100cafcf61a111ba.png

人在美国,刚下飞机,在飞机上阅读了下faster rcnn 分步训练的源码,感觉网上关于end2end方式的代码解读不少,却鲜有alt opt方式的代码解读,写此文的目的也是帮助大家尽可能地理解分步训练的核心要点,也算是为自己做个笔记把。有不对的地方还请各位大佬指正。

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1 引言

目标检测算法框架的发展更新非常之块,并且各种算法的性能也在不断地提升。经典的目标检测框架如faster rcnn[1],yolo v3[2]是该领域发展较为成功的两个例子。Faster rcnn的优点在于精度高,yolo的特点在于检测速度快,并且越来越多的衍生算法也在不断地被提出,如mask rcnn[3]。迁移学习方法的提出有效地解决了监督学习问题中标注数据代价昂贵的缺点,目标检测与迁移学习方法的结合,能够让机器学习算法自适应更多的Web领域。迁移学习的综述文章见[4]。

本次代码解读基于Faster rcnn原作者开源的caffe版本代码:

rbgirshick/py-faster-rcnn​github.com
39ac8b9473abe4e8e8c738b1f3c3c785.png

paper 链接:

http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf​papers.nips.cc

2 faster-rcnn结构理解

Faster-rcnn的结构模型如图1所示,

1b4e3e89e4b92a4046abc0dbb8f64984.png
图1

图1

其较为突出的几个创新点:

①在fast-rcnn的基础上采用了特征共享网络,极大地降低了候选框特征提取的时间。

②使用rpn网络替换fast-rcnn中的selective search方法,提升了ROI proposal的精度与效率。

③使用ROI-pooling层对提取出的ROI进行特殊池化,统一了不同ROI提取的尺寸。

2.1参数设置

2.1.1网络参数

在训练与测试阶段均使用单尺度图片,分步训练过程中见图片尺寸re-size为短边像素长度为300,end2end训练方式的图片短边尺寸为600。共享特征图的下采样倍数为16。

Anchor的尺寸共有9种,由3种不同的缩放比1:1;1:2;2:1与3种不同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值